Which principle in physical activity claims that in order to progress and improve our fitness we have to fat our bodies under additional stress?

1. Eime R.M., Young J.A., Harvey J.T., Charity M.J., Payne W.R. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: Informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act. 2013;10:98. doi: 10.1186/1479-5868-10-98. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Nowak P.F. Amateur Sports of the Elderly: A Chance for Health and a Higher Quality of Life. Adv. Aging Res. 2014;3:222–229. doi: 10.4236/aar.2014.33031. [CrossRef] [Google Scholar]

3. Fraser-Thomas J., Strachan L. Personal developemnt and performance? In: Baker J., Safai P., Fraser-Thomas J., editors. Health and Elite Sport: Is High Performance Sport a Healthy Pursuit? Taylor & Francis Group; Londond, UK: 2015. Routledge Research in Sport, Culture and Society. [Google Scholar]

4. Lopez Villalba F.J., Rodriguez Garcia P.L., Garcia Canto E., Perez Soto J.J. Relationship between sport and physical activity and alcohol consumption among adolescents students in Murcia (Spain) Arch. Argent. Pediatr. 2016;114:101–106. doi: 10.5546/aap.2016.eng.101. [PubMed] [CrossRef] [Google Scholar]

5. Elofsson S., Blomdahl U., Åkesson M., Lengheden L. Dricker ungdomar i idrotsförening mindre alkohol än de som inte är med i en idrotsförening? Stockholm stads idrottsförvalnintg; Stockholm, Sweden: 2014. [Google Scholar]

6. Kjonniksen L., Anderssen N., Wold B. Organized youth sport as a predictor of physical activity in adulthood. Scand. J. Med. Sci. Sports. 2009;19:646–654. doi: 10.1111/j.1600-0838.2008.00850.x. [PubMed] [CrossRef] [Google Scholar]

7. Khan K.M., Thompson A.M., Blair S.N., Sallis J.F., Powell K.E., Bull F.C., Bauman A.E. Sport and exercise as contributors to the health of nations. Lancet. 2012;380:59–64. doi: 10.1016/S0140-6736(12)60865-4. [PubMed] [CrossRef] [Google Scholar]

8. Howie E.K., McVeigh J.A., Smith A.J., Straker L.M. Organized Sport Trajectories from Childhood to Adolescence and Health Associations. Med. Sci. Sports Exerc. 2016;48:1331–1339. doi: 10.1249/MSS.0000000000000894. [PubMed] [CrossRef] [Google Scholar]

9. Rice S.M., Purcell R., De Silva S., Mawren D., McGorry P.D., Parker A.G. The Mental Health of Elite Athletes: A Narrative Systematic Review. Sports Med. 2016;46:1333–1353. doi: 10.1007/s40279-016-0492-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Schwellnus M., Soligard T., Alonso J.M., Bahr R., Clarsen B., Dijkstra H.P., Gabbett T.J., Gleeson M., Hagglund M., Hutchinson M.R., et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 2016;50:1043–1052. doi: 10.1136/bjsports-2016-096572. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Soligard T., Schwellnus M., Alonso J.M., Bahr R., Clarsen B., Dijkstra H.P., Gabbett T., Gleeson M., Hagglund M., Hutchinson M.R., et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 2016;50:1030–1041. doi: 10.1136/bjsports-2016-096581. [PubMed] [CrossRef] [Google Scholar]

12. Joy E., Kussman A., Nattiv A. 2016 update on eating disorders in athletes: A comprehensive narrative review with a focus on clinical assessment and management. Br. J. Sports Med. 2016;50:154–162. doi: 10.1136/bjsports-2015-095735. [PubMed] [CrossRef] [Google Scholar]

13. Brenner J.S. Overuse injuries, overtraining, and burnout in child and adolescent athletes. Pediatrics. 2007;119:1242–1245. doi: 10.1542/peds.2007-0887. [PubMed] [CrossRef] [Google Scholar]

14. Clark A., Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016;13:43. doi: 10.1186/s12970-016-0155-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Lang M., Hartill M. Safeguarding, Child Protection and Abuse in Sport: International Perspectives in Research, Policy and Practice. Taylor & Francis; Abingdon-on-Thames, UK: 2014. [Google Scholar]

16. Pontzer H., Durazo-Arvizu R., Dugas L.R., Plange-Rhule J., Bovet P., Forrester T.E., Lambert E.V., Cooper R.S., Schoeller D.A., Luke A. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans. Curr. Biol. 2016;26:410–417. doi: 10.1016/j.cub.2015.12.046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Engström L.-M. Barns och ungdomars idrottsvanor i förändring. Svensk Idrottsforskning: Organ för Centrum för Idrottsforskning. 2004;4:10–15. [Google Scholar]

18. The Swedish Sports Confederation . In: Sport statisitcs [Idrotten i siffror} Confederation T.S.S., editor. The Swedish Sports Confederation; Stockholm, Sweden: 2015. [Google Scholar]

19. SCB . Levnadsförhållanden: Fritid 2006-2007 [Living Conditions: Recreation 2006-2007] Statistics Sweden; Stockholm, Sweden: 2009. 118. [Google Scholar]

20. Swedish National Institute of Publich Health Physical Activity in the Prevention and Treatment of Disease (FYSS) Swedish National Institute of Publich Health, and Swedish Professional Associations for Physical Activity; Järna, Sweden: 2017. [Google Scholar]

22. US Department of Human Services . Physical Activity Guidelines Advisory Committee report, 2008. To the Secretary of Health and Human Services. Part A: Executive Summary. US Department of Human Services; Washington, DC, USA: 2009. pp. 114–120. 0029-6643. [PubMed] [Google Scholar]

23. Publich Health Agency of Sweden . Vad är Fysisk Aktivitet? [What Is Physical Activity?] Volume 2016 Publich Health Agency of Sweden; Solna, Sweden: 2016. [Google Scholar]

24. Swedish Research Council for Sport Science (CIF) Sport Relevance [Idrottsrelevans] Volume 2016 Swedish Research Council for Sport Science (CIF); Stockholm, Sweden: 2016. [Google Scholar]

25. Healy G.N., Wijndaele K., Dunstan D.W., Shaw J.E., Salmon J., Zimmet P.Z., Owen N. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab) Diabetes Care. 2008;31:369–371. doi: 10.2337/dc07-1795. [PubMed] [CrossRef] [Google Scholar]

26. Matthews C.E., George S.M., Moore S.C., Bowles H.R., Blair A., Park Y., Troiano R.P., Hollenbeck A., Schatzkin A. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am. J. Clin. Nutr. 2012;95:437–445. doi: 10.3945/ajcn.111.019620. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Stamatakis E., Gale J., Bauman A., Ekelund U., Hamer M., Ding D. Sitting Time, Physical Activity, and Risk of Mortality in Adults. J. Am. Coll. Cardiol. 2019;73:2062–2072. doi: 10.1016/j.jacc.2019.02.031. [PubMed] [CrossRef] [Google Scholar]

28. Ratzlaff C.R., Doerfling P., Steininger G., Koehoorn M., Cibere J., Liang M., Wilson D.R., Esdaile J., Kopec J. Lifetime trajectory of physical activity according to energy expenditure and joint force. Arthritis Care Res. 2010;62:1452–1459. doi: 10.1002/acr.20243. [PubMed] [CrossRef] [Google Scholar]

29. Geneen L.J., Moore R.A., Clarke C., Martin D., Colvin L.A., Smith B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017;4:CD011279. doi: 10.1002/14651858.CD011279.pub3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Liberman K., Forti L.N., Beyer I., Bautmans I. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: A systematic review. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:30–53. doi: 10.1097/MCO.0000000000000335. [PubMed] [CrossRef] [Google Scholar]

31. Schuch F.B., Vancampfort D., Richards J., Rosenbaum S., Ward P.B., Stubbs B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J. Psychiatr. Res. 2016;77:42–51. doi: 10.1016/j.jpsychires.2016.02.023. [PubMed] [CrossRef] [Google Scholar]

32. Schoenfeld B.J., Wilson J.M., Lowery R.P., Krieger J.W. Muscular adaptations in low-versus high-load resistance training: A meta-analysis. Eur. J. Sport Sci. 2016;16:1–10. doi: 10.1080/17461391.2014.989922. [PubMed] [CrossRef] [Google Scholar]

33. Muehlbauer T., Gollhofer A., Granacher U. Associations Between Measures of Balance and Lower-Extremity Muscle Strength/Power in Healthy Individuals Across the Lifespan: A Systematic Review and Meta-Analysis. Sports Med. 2015;45:1671–1692. doi: 10.1007/s40279-015-0390-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Timperio A., Salmon J., Rosenberg M., Bull F.C. Do logbooks influence recall of physical activity in validation studies? Med. Sci. Sports Exerc. 2004;36:1181–1186. doi: 10.1249/01.MSS.0000132268.74992.D8. [PubMed] [CrossRef] [Google Scholar]

35. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb. [PubMed] [CrossRef] [Google Scholar]

36. McEwen B.S. Stressed or stressed out: What is the difference? J. Psychiatry Neurosci. Jpn. 2005;30:315–318. [PMC free article] [PubMed] [Google Scholar]

38. Kraemer W.J., Ratamess N.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004;36:674–688. doi: 10.1249/01.MSS.0000121945.36635.61. [PubMed] [CrossRef] [Google Scholar]

39. Baechle T.R., Earle R.W. Essentials of Strength Training and Conditioning. 3rd ed. Human Kinetics; Champaign, IL, USA: 2008. [Google Scholar]

40. Ronnestad B.R., Ellefsen S., Nygaard H., Zacharoff E.E., Vikmoen O., Hansen J., Hallen J. Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists. Scand. J. Med. Sci. Sports. 2014;24:327–335. doi: 10.1111/sms.12016. [PubMed] [CrossRef] [Google Scholar]

41. Ahtiainen J.P., Walker S., Peltonen H., Holviala J., Sillanpaa E., Karavirta L., Sallinen J., Mikkola J., Valkeinen H., Mero A., et al. Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age. 2016;38:10. doi: 10.1007/s11357-015-9870-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Davidsen P.K., Gallagher I.J., Hartman J.W., Tarnopolsky M.A., Dela F., Helge J.W., Timmons J.A., Phillips S.M. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J. Appl. Physiol. (Bethesda Md. 1985) 2011;110:309–317. doi: 10.1152/japplphysiol.00901.2010. [PubMed] [CrossRef] [Google Scholar]

43. Timmons J.A. Variability in training-induced skeletal muscle adaptation. J. Appl. Physiol. (Bethesda Md. 1985) 2011;110:846–853. doi: 10.1152/japplphysiol.00934.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Vollaard N.B., Constantin-Teodosiu D., Fredriksson K., Rooyackers O., Jansson E., Greenhaff P.L., Timmons J.A., Sundberg C.J. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J. Appl. Physiol. (Bethesda Md. 1985) 2009;106:1479–1486. doi: 10.1152/japplphysiol.91453.2008. [PubMed] [CrossRef] [Google Scholar]

45. Venezia A.C., Roth S.M. Recent Research in the Genetics of Exercise Training Adaptation. Med. Sport Sci. 2016;61:29–40. doi: 10.1159/000445239. [PubMed] [CrossRef] [Google Scholar]

46. Porter C., Reidy P.T., Bhattarai N., Sidossis L.S., Rasmussen B.B. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med. Sci. Sports Exerc. 2015;47:1922–1931. doi: 10.1249/MSS.0000000000000605. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Verdijk L.B., Snijders T., Holloway T.M., J V.A.N.K., LJ V.A.N.L. Resistance Training Increases Skeletal Muscle Capillarization in Healthy Older Men. Med. Sci. Sports Exerc. 2016;48:2157–2164. doi: 10.1249/MSS.0000000000001019. [PubMed] [CrossRef] [Google Scholar]

48. Mujika I., Padilla S. Detraining: Loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. Sports Med. 2000;30:79–87. doi: 10.2165/00007256-200030020-00002. [PubMed] [CrossRef] [Google Scholar]

49. Gundersen K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J. Exp. Biol. 2016;219:235–242. doi: 10.1242/jeb.124495. [PubMed] [CrossRef] [Google Scholar]

50. Leonard W.R. Size counts: Evolutionary perspectives on physical activity and body size from early hominids to modern humans. J. Phys. Act. Health. 2010;7(Suppl. 3):S284–S298. doi: 10.1123/jpah.7.s3.s284. [PubMed] [CrossRef] [Google Scholar]

51. Leonard W.R., Robertson M.L. Nutritional requirements and human evolution: A bioenergetics model. Am. J. Hum. Biol. 1992;4:179–195. doi: 10.1002/ajhb.1310040204. [PubMed] [CrossRef] [Google Scholar]

52. Cordain L., Gotshall R.W., Eaton S.B., Eaton S.B., 3rd Physical activity, energy expenditure and fitness: An evolutionary perspective. Int. J. Sports Med. 1998;19:328–335. doi: 10.1055/s-2007-971926. [PubMed] [CrossRef] [Google Scholar]

53. SCB . Levnadsförhållanden: Fritid 1976-2002 [Levnadsförhållanden: Fritid 2006-2007 [Living conditions: Recreation 1976-2002]] Statistics Sweden; Stockholm, Sweden: 2004. 103. [Google Scholar]

54. Church T.S., Thomas D.M., Tudor-Locke C., Katzmarzyk P.T., Earnest C.P., Rodarte R.Q., Martin C.K., Blair S.N., Bouchard C. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE. 2011;6:e19657. doi: 10.1371/journal.pone.0019657. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. The Public Health Agency of Sweden . Children’s and Youth’s Pattern of Movement. The Public Health Agency of Sweden; Solna: Sweden 2019. [Google Scholar]

56. Holt N.L., Neely K.C., Slater L.G., Camire M., Cote J., Fraser-Thomas J., MacDonald D., Strachan L., Tamminen K.A. A grounded theory of positive youth development through sport based on results from a qualitative meta-study. Int. Rev. Sport Exerc. Psychol. 2017;10:1–49. doi: 10.1080/1750984X.2016.1180704. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Andersen L.B., Mota J., Di Pietro L. Update on the global pandemic of physical inactivity. Lancet. 2016;388:1255–1256. doi: 10.1016/S0140-6736(16)30960-6. [PubMed] [CrossRef] [Google Scholar]

58. Das P., Horton R. Physical activity-time to take it seriously and regularly. Lancet. 2016;388:1254–1255. doi: 10.1016/S0140-6736(16)31070-4. [PubMed] [CrossRef] [Google Scholar]

59. Kujala U.M., Kaprio J., Sarna S., Koskenvuo M. Relationship of leisure-time physical activity and mortality: The Finnish twin cohort. JAMA. 1998;279:440–444. doi: 10.1001/jama.279.6.440. [PubMed] [CrossRef] [Google Scholar]

60. Hills A.P., Street S.J., Byrne N.M. Physical Activity and Health: “What is Old is New Again” Adv. Food Nutr. Res. 2015;75:77–95. doi: 10.1016/bs.afnr.2015.06.001. [PubMed] [CrossRef] [Google Scholar]

61. Arem H., Moore S.C., Patel A., Hartge P., Berrington de Gonzalez A., Visvanathan K., Campbell P.T., Freedman M., Weiderpass E., Adami H.O., et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Internal Med. 2015;175:959–967. doi: 10.1001/jamainternmed.2015.0533. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Physical Activity Guidelines Advisory Committee . Physical Activity Guidelines Advisory Committee Scientific Report. U.S. Department of Health and Human Services; Washington, DC, USA: 2018. [Google Scholar]

63. Blair S.N. Physical inactivity and cardiovascular disease risk in women. Med. Sci. Sports Exerc. 1996;28:9–10. doi: 10.1097/00005768-199601000-00004. [PubMed] [CrossRef] [Google Scholar]

64. Booth F.W., Roberts C.K., Laye M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012;2:1143–1211. doi: 10.1002/cphy.c110025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Wegner M., Helmich I., Machado S., Nardi A.E., Arias-Carrion O., Budde H. Effects of exercise on anxiety and depression disorders: Review of meta- analyses and neurobiological mechanisms. CNS Neurol. Disorders Drug Targets. 2014;13:1002–1014. doi: 10.2174/1871527313666140612102841. [PubMed] [CrossRef] [Google Scholar]

66. Bennett K., Manassis K., Duda S., Bagnell A., Bernstein G.A., Garland E.J., Miller L.D., Newton A., Thabane L., Wilansky P. Preventing Child and Adolescent Anxiety Disorders: Overview of Systematic Reviews. Depress Anxiety. 2015;32:909–918. doi: 10.1002/da.22400. [PubMed] [CrossRef] [Google Scholar]

67. Lopresti A.L., Hood S.D., Drummond P.D. A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. J. Affect. Disord. 2013;148:12–27. doi: 10.1016/j.jad.2013.01.014. [PubMed] [CrossRef] [Google Scholar]

68. Stubbs B., Vancampfort D., Rosenbaum S., Firth J., Cosco T., Veronese N., Salum G.A., Schuch F.B. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: A meta-analysis. Psychiatry Res. 2017;249:102–108. doi: 10.1016/j.psychres.2016.12.020. [PubMed] [CrossRef] [Google Scholar]

69. Knochel C., Oertel-Knochel V., O’Dwyer L., Prvulovic D., Alves G., Kollmann B., Hampel H. Cognitive and behavioural effects of physical exercise in psychiatric patients. Progr. Neurobiol. 2012;96:46–68. doi: 10.1016/j.pneurobio.2011.11.007. [PubMed] [CrossRef] [Google Scholar]

70. Craig D.M., Ashcroft S.P., Belew M.Y., Stocks B., Currell K., Baar K., Philp A. Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis. Front. Physiol. 2015;6 doi: 10.3389/fphys.2015.00296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Wilson M.G., Ellison G.M., Cable N.T. Basic science behind the cardiovascular benefits of exercise. Heart. 2015;101:758–765. doi: 10.1136/heartjnl-2014-306596. [PubMed] [CrossRef] [Google Scholar]

72. Hellsten Y., Nyberg M. Cardiovascular Adaptations to Exercise Training. Compr. Physiol. 2015;6:1–32. doi: 10.1002/cphy.c140080. [PubMed] [CrossRef] [Google Scholar]

73. Wilson J.M., Loenneke J.P., Jo E., Wilson G.J., Zourdos M.C., Kim J.S. The effects of endurance, strength, and power training on muscle fiber type shifting. J. Strength Cond. Res. 2012;26:1724–1729. doi: 10.1519/JSC.0b013e318234eb6f. [PubMed] [CrossRef] [Google Scholar]

74. Cadore E.L., Pinto R.S., Bottaro M., Izquierdo M. Strength and endurance training prescription in healthy and frail elderly. Aging Dis. 2014;5:183–195. doi: 10.14336/AD.2014.0500183. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Tofthagen C., Visovsky C., Berry D.L. Strength and balance training for adults with peripheral neuropathy and high risk of fall: Current evidence and implications for future research. Oncol. Nurs. Forum. 2012;39:E416–E424. doi: 10.1188/12.ONF.E416-E424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Cho S.I., An D.H. Effects of a Fall Prevention Exercise Program on Muscle Strength and Balance of the Old-old Elderly. J. Phys. Ther. Sci. 2014;26:1771–1774. doi: 10.1589/jpts.26.1771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Kyu H.H., Bachman V.F., Alexander L.T., Mumford J.E., Afshin A., Estep K., Veerman J.L., Delwiche K., Iannarone M.L., Moyer M.L., et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354:i3857. doi: 10.1136/bmj.i3857. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Pearson M.J., Smart N.A. Effect of exercise training on endothelial function in heart failure patients: A systematic review meta-analysis. Int. J. Cardiol. 2017;231:234–243. doi: 10.1016/j.ijcard.2016.12.145. [PubMed] [CrossRef] [Google Scholar]

79. Nielsen J., Gejl K.D., Hey-Mogensen M., Holmberg H.C., Suetta C., Krustrup P., Elemans C.P.H., Ortenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J. Physiol. 2017;595:2839–2847. doi: 10.1113/JP273040. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Richter E.A., Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 2013;93:993–1017. doi: 10.1152/physrev.00038.2012. [PubMed] [CrossRef] [Google Scholar]

81. Marson E.C., Delevatti R.S., Prado A.K., Netto N., Kruel L.F. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: A systematic review and meta-analysis. Prev. Med. 2016;93:211–218. doi: 10.1016/j.ypmed.2016.10.020. [PubMed] [CrossRef] [Google Scholar]

82. Way K.L., Hackett D.A., Baker M.K., Johnson N.A. The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Metab. J. 2016;40:253–271. doi: 10.4093/dmj.2016.40.4.253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Conn V.S., Koopman R.J., Ruppar T.M., Phillips L.J., Mehr D.R., Hafdahl A.R. Insulin Sensitivity Following Exercise Interventions: Systematic Review and Meta-Analysis of Outcomes Among Healthy Adults. J. Prim Care Community Health. 2014;5:211–222. doi: 10.1177/2150131913520328. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Schuch F.B., Deslandes A.C., Stubbs B., Gosmann N.P., Silva C.T., Fleck M.P. Neurobiological effects of exercise on major depressive disorder: A systematic review. Neurosci. Biobehav. Rev. 2016;61:1–11. doi: 10.1016/j.neubiorev.2015.11.012. [PubMed] [CrossRef] [Google Scholar]

85. Schuch F.B., Vancampfort D., Sui X., Rosenbaum S., Firth J., Richards J., Ward P.B., Stubbs B. Are lower levels of cardiorespiratory fitness associated with incident depression? A systematic review of prospective cohort studies. Prev. Med. 2016;93:159–165. doi: 10.1016/j.ypmed.2016.10.011. [PubMed] [CrossRef] [Google Scholar]

86. Zahl T., Steinsbekk S., Wichstrom L. Physical Activity, Sedentary Behavior, and Symptoms of Major Depression in Middle Childhood. Pediatrics. 2017;139 doi: 10.1542/peds.2016-1711. [PubMed] [CrossRef] [Google Scholar]

87. Colaianni G., Mongelli T., Colucci S., Cinti S., Grano M. Crosstalk Between Muscle and Bone Via the Muscle-Myokine Irisin. Curr. Osteoporos. Rep. 2016;14:132–137. doi: 10.1007/s11914-016-0313-4. [PubMed] [CrossRef] [Google Scholar]

88. Giangregorio L.M., McGill S., Wark J.D., Laprade J., Heinonen A., Ashe M.C., MacIntyre N.J., Cheung A.M., Shipp K., Keller H., et al. Too Fit to Fracture: Outcomes of a Delphi consensus process on physical activity and exercise recommendations for adults with osteoporosis with or without vertebral fractures. Osteoporos. Int. 2015;26:891–910. doi: 10.1007/s00198-014-2881-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Papa E.V., Dong X., Hassan M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin. Interv. Aging. 2017;12:955–961. doi: 10.2147/CIA.S104674. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Casonatto J., Goessler K.F., Cornelissen V.A., Cardoso J.R., Polito M.D. The blood pressure-lowering effect of a single bout of resistance exercise: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Prev. Cardiol. 2016;23:1700–1714. doi: 10.1177/2047487316664147. [PubMed] [CrossRef] [Google Scholar]

91. MacDonald H.V., Johnson B.T., Huedo-Medina T.B., Livingston J., Forsyth K.C., Kraemer W.J., Farinatti P.T.V., Pescatello L.S. Dynamic Resistance Training as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J. Am. Heart Assoc. 2016;5:e003231. doi: 10.1161/JAHA.116.003231. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Ettehad D., Emdin C.A., Kiran A., Anderson S.G., Callender T., Emberson J., Chalmers J., Rodgers A., Rahimi K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet. 2016;387:957–967. doi: 10.1016/S0140-6736(15)01225-8. [PubMed] [CrossRef] [Google Scholar]

93. Chen Y.C., Tsai J.C., Liou Y.M., Chan P. Effectiveness of endurance exercise training in patients with coronary artery disease: A meta-analysis of randomised controlled trials. Eur. J. Cardiovasc. Nurs. 2017;16:397–408. doi: 10.1177/1474515116684407. [PubMed] [CrossRef] [Google Scholar]

94. Bachi A.L., Rocha G.A., Sprandel M.C., Ramos L.R., Gravina C.F., Pithon-Curi T.C., Vaisberg M., Maranhao R.C. Exercise Training Improves Plasma Lipid and Inflammatory Profiles and Increases Cholesterol Transfer to High-Density Lipoprotein in Elderly Women. J. Am. Geriatr. Soc. 2015;63:1247–1249. doi: 10.1111/jgs.13500. [PubMed] [CrossRef] [Google Scholar]

95. Climstein M., Walsh J., Debeliso M., Heazlewood T., Sevene T., Adams K. Cardiovascular risk profiles of world masters games participants. J. Sports Med. Phys. Fitness. 2018;58:489–496. [PubMed] [Google Scholar]

96. Anstey K.J., Ashby-Mitchell K., Peters R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J. Alzheimers Dis. 2017;56:215–228. doi: 10.3233/JAD-160826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Stoedefalke K. Effects of exercise training on blood lipids and lipoproteins in children and adolescents. J. Sports Sci. Med. 2007;6:313–318. [PMC free article] [PubMed] [Google Scholar]

98. Hvid L.G., Strotmeyer E.S., Skjodt M., Magnussen L.V., Andersen M., Caserotti P. Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults - A randomized controlled trial. Exp. Gerontol. 2016;80:51–56. doi: 10.1016/j.exger.2016.03.018. [PubMed] [CrossRef] [Google Scholar]

99. Jackson W.M., Davis N., Sands S.A., Whittington R.A., Sun L.S. Physical Activity and Cognitive Development: A Meta-Analysis. J. Neurosurg. Anesthesiol. 2016;28:373–380. doi: 10.1097/ANA.0000000000000349. [PubMed] [CrossRef] [Google Scholar]

100. Ludyga S., Gerber M., Brand S., Holsboer-Trachsler E., Puhse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology. 2016;53:1611–1626. doi: 10.1111/psyp.12736. [PubMed] [CrossRef] [Google Scholar]

101. Dinoff A., Herrmann N., Swardfager W., Liu C.S., Sherman C., Chan S., Lanctot K.L. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS ONE. 2016;11:e0163037. doi: 10.1371/journal.pone.0163037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Kelley G.A., Kelley K.S. Exercise and Sleep: A Systematic Review of Previous Meta-analyses And A Meta-analysis: 284 Board #121 June 1, 9: 30 AM - 11: 00 AM. Med. Sci. Sports Exerc. 2016;48:68–69. doi: 10.1249/01.mss.0000485215.60173.71. [CrossRef] [Google Scholar]

103. Kandola A., Hendrikse J., Lucassen P.J., Yucel M. Aerobic Exercise as a Tool to Improve Hippocampal Plasticity and Function in Humans: Practical Implications for Mental Health Treatment. Front. Hum. Neurosci. 2016;10:373. doi: 10.3389/fnhum.2016.00373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Smith G.E. Healthy Cognitive Aging and Dementia Prevention. Am. Psychol. 2016;71:268–275. doi: 10.1037/a0040250. [PubMed] [CrossRef] [Google Scholar]

105. Shaffer J. Neuroplasticity and Clinical Practice: Building Brain Power for Health. Front. Psychol. 2016;7:1118. doi: 10.3389/fpsyg.2016.01118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Ryan S.M., Nolan Y.M. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: Can exercise compensate? Neurosci. Biobehav. Rev. 2016;61:121–131. doi: 10.1016/j.neubiorev.2015.12.004. [PubMed] [CrossRef] [Google Scholar]

107. Boraxbekk C.J., Salami A., Wahlin A., Nyberg L. Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network-A multimodal approach. Neuroimage. 2016;131:133–141. doi: 10.1016/j.neuroimage.2015.12.010. [PubMed] [CrossRef] [Google Scholar]

108. Dhabhar F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014;58:193–210. doi: 10.1007/s12026-014-8517-0. [PubMed] [CrossRef] [Google Scholar]

110. Gjevestad G.O., Holven K.B., Ulven S.M. Effects of Exercise on Gene Expression of Inflammatory Markers in Human Peripheral Blood Cells: A Systematic Review. Curr. Cardiovasc. Risk Rep. 2015;9:34. doi: 10.1007/s12170-015-0463-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Runhaar J., Bierma-Zeinstra S.M. Should exercise therapy for chronic musculoskeletal conditions focus on the anti-inflammatory effects of exercise? Br. J. Sports Med. 2016 doi: 10.1136/bjsports-2016-096489. [PubMed] [CrossRef] [Google Scholar]

112. Codella R., Luzi L., Inverardi L., Ricordi C. The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity. Eur. Rev. Med. Pharmacol. Sci. 2015;19:3709–3722. [PubMed] [Google Scholar]

113. Mika A., Fleshner M. Early-life exercise may promote lasting brain and metabolic health through gut bacterial metabolites. Immunol. Cell Biol. 2016;94:151–157. doi: 10.1038/icb.2015.113. [PubMed] [CrossRef] [Google Scholar]

114. Thomas R.J., Kenfield S.A., Jimenez A. Exercise-induced biochemical changes and their potential influence on cancer: A scientific review. Br. J. Sports Med. 2016 doi: 10.1136/bjsports-2016-096343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. McKercher C., Sanderson K., Schmidt M.D., Otahal P., Patton G.C., Dwyer T., Venn A.J. Physical activity patterns and risk of depression in young adulthood: A 20-year cohort study since childhood. Soc. Psych. Psych. Epid. 2014;49:1823–1834. doi: 10.1007/s00127-014-0863-7. [PubMed] [CrossRef] [Google Scholar]

117. von Martels J.Z., Sadaghian Sadabad M., Bourgonje A.R., Blokzijl T., Dijkstra G., Faber K.N., Harmsen H.J. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe. 2017;44:3–12. doi: 10.1016/j.anaerobe.2017.01.001. [PubMed] [CrossRef] [Google Scholar]

118. Bogdanis G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012;3:142. doi: 10.3389/fphys.2012.00142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Eriksson A. Ph.D. Thesis. Umeå University; Umeå, Sweden: 2006. Strength Training and Anabolic Steroids: A Comparative Study of the Vastus Lateralis, a Thigh Muscle and the Trapezius, a Shoulder Muscle, of Strength-Trained Athletes. [Google Scholar]

120. Eriksson A., Kadi F., Malm C., Thornell L.E. Skeletal muscle morphology in power-lifters with and without anabolic steroids. Histochem. Cell Biol. 2005;124:167–175. doi: 10.1007/s00418-005-0029-5. [PubMed] [CrossRef] [Google Scholar]

121. Stevens G.A., Alkema L., Black R.E., Boerma J.T., Collins G.S., Ezzati M., Grove J.T., Hogan D.R., Hogan M.C., Horton R., et al. Guidelines for Accurate and Transparent Health Estimates Reporting: The GATHER statement. Lancet. 2016;388:e19–e23. doi: 10.1016/S0140-6736(16)30388-9. [PubMed] [CrossRef] [Google Scholar]

122. Borde R., Hortobagyi T., Granacher U. Dose-Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis. Sports Med. 2015;45:1693–1720. doi: 10.1007/s40279-015-0385-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Northey J.M., Cherbuin N., Pumpa K.L., Smee D.J., Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018;52:154–160. doi: 10.1136/bjsports-2016-096587. [PubMed] [CrossRef] [Google Scholar]

124. Gordon B.R., McDowell C.P., Lyons M., Herring M.P. The Effects of Resistance Exercise Training on Anxiety: A Meta-Analysis and Meta-Regression Analysis of Randomized Controlled Trials. Sports Med. 2017;47:2521–2532. doi: 10.1007/s40279-017-0769-0. [PubMed] [CrossRef] [Google Scholar]

125. Keilani M., Hasenoehrl T., Baumann L., Ristl R., Schwarz M., Marhold M., Sedghi Komandj T., Crevenna R. Effects of resistance exercise in prostate cancer patients: A meta-analysis. Support. Care Cancer. 2017;25:2953–2968. doi: 10.1007/s00520-017-3771-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Yamamoto S., Hotta K., Ota E., Mori R., Matsunaga A. Effects of resistance training on muscle strength, exercise capacity, and mobility in middle-aged and elderly patients with coronary artery disease: A meta-analysis. J. Cardiol. 2016;68:125–134. doi: 10.1016/j.jjcc.2015.09.005. [PubMed] [CrossRef] [Google Scholar]

127. Mammen G., Faulkner G. Physical activity and the prevention of depression: A systematic review of prospective studies. Am. J. Prev. Med. 2013;45:649–657. doi: 10.1016/j.amepre.2013.08.001. [PubMed] [CrossRef] [Google Scholar]

128. Csapo R., Alegre L.M. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand. J. Med. Sci. Sports. 2016;26:995–1006. doi: 10.1111/sms.12536. [PubMed] [CrossRef] [Google Scholar]

129. Churchward-Venne T.A., Tieland M., Verdijk L.B., Leenders M., Dirks M.L., de Groot L.C., van Loon L.J. There Are No Nonresponders to Resistance-Type Exercise Training in Older Men and Women. J. Am. Med. Dir. Assoc. 2015;16:400–411. doi: 10.1016/j.jamda.2015.01.071. [PubMed] [CrossRef] [Google Scholar]

130. Garcia-Hermoso A., Ramirez-Velez R., Ramirez-Campillo R., Peterson M.D., Martinez-Vizcaino V. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: A systematic review and meta-analysis. Br. J. Sports Med. 2018;52:161–166. doi: 10.1136/bjsports-2016-096605. [PubMed] [CrossRef] [Google Scholar]

131. Groot C., Hooghiemstra A.M., Raijmakers P.G., van Berckel B.N., Scheltens P., Scherder E.J., van der Flier W.M., Ossenkoppele R. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res. Rev. 2016;25:13–23. doi: 10.1016/j.arr.2015.11.005. [PubMed] [CrossRef] [Google Scholar]

132. Chung C.L., Thilarajah S., Tan D. Effectiveness of resistance training on muscle strength and physical function in people with Parkinson’s disease: A systematic review and meta-analysis. Clin. Rehabil. 2016;30:11–23. doi: 10.1177/0269215515570381. [PubMed] [CrossRef] [Google Scholar]

133. Kang H., Lu J., Xu G. The effects of whole body vibration on muscle strength and functional mobility in persons with multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2016;7:1–7. doi: 10.1016/j.msard.2016.02.008. [PubMed] [CrossRef] [Google Scholar]

134. Portugal E.M., Vasconcelos P.G., Souza R., Lattari E., Monteiro-Junior R.S., Machado S., Deslandes A.C. Aging process, cognitive decline and Alzheimer’s disease: Can strength training modulate these responses? CNS & Neurol. Disorders Drug Targets. 2015;14:1209–1213. [PubMed] [Google Scholar]

135. Bacchi E., Negri C., Zanolin M.E., Milanese C., Faccioli N., Trombetta M., Zoppini G., Cevese A., Bonadonna R.C., Schena F., et al. Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: A randomized controlled trial (the RAED2 study) Diabetes Care. 2012;35:676–682. doi: 10.2337/dc11-1655. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Steindorf K., Schmidt M.E., Klassen O., Ulrich C.M., Oelmann J., Habermann N., Beckhove P., Owen R., Debus J., Wiskemann J., et al. Randomized, controlled trial of resistance training in breast cancer patients receiving adjuvant radiotherapy: Results on cancer-related fatigue and quality of life. Ann. Oncol. 2014;25:2237–2243. doi: 10.1093/annonc/mdu374. [PubMed] [CrossRef] [Google Scholar]

137. Ciolac E.G., Rodrigues-da-Silva J.M. Resistance Training as a Tool for Preventing and Treating Musculoskeletal Disorders. Sports Med. 2016;46:1239–1248. doi: 10.1007/s40279-016-0507-z. [PubMed] [CrossRef] [Google Scholar]

138. Castrogiovanni P., Trovato F.M., Szychlinska M.A., Nsir H., Imbesi R., Musumeci G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 2016;31:1183–1194. doi: 10.14670/HH-11-793. [PubMed] [CrossRef] [Google Scholar]

139. Johansson J., Nordstrom A., Nordstrom P. Greater Fall Risk in Elderly Women Than in Men Is Associated With Increased Gait Variability During Multitasking. J. Am. Med. Dir. Assoc. 2016;17:535–540. doi: 10.1016/j.jamda.2016.02.009. [PubMed] [CrossRef] [Google Scholar]

140. Gillespie L.D., Robertson M.C., Gillespie W.J., Lamb S.E., Gates S., Cumming R.G., Rowe B.H. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2009:Cd007146. doi: 10.1002/14651858.CD007146.pub2. [PubMed] [CrossRef] [Google Scholar]

141. Svantesson U., Jones J., Wolbert K., Alricsson M. Impact of Physical Activity on the Self-Perceived Quality of Life in Non-Frail Older Adults. J. Clin. Med. Res. 2015;7:585–593. doi: 10.14740/jocmr2021w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Mitchell W.K., Williams J., Atherton P., Larvin M., Lund J., Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength: A quantitative review. Front. Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Csapo R., Gormasz C., Baron R. Functional performance in community-dwelling and institutionalized elderly women. Wiener Klinische Wochenschrift. 2009;121:383–390. doi: 10.1007/s00508-009-1151-5. [PubMed] [CrossRef] [Google Scholar]

144. Mayer F., Scharhag-Rosenberger F., Carlsohn A., Cassel M., Muller S., Scharhag J. The intensity and effects of strength training in the elderly. Deutsches Arzteblatt Int. 2011;108:359–364. doi: 10.3238/arztebl.2011.0359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Stewart V.H., Saunders D.H., Greig C.A. Responsiveness of muscle size and strength to physical training in very elderly people: A systematic review. Scand. J. Med. Sci. Sports. 2014;24:e1–10. doi: 10.1111/sms.12123. [PubMed] [CrossRef] [Google Scholar]

146. Physical Activities Guidelines Advisory Committee . Physical Activity Guidelines Advisory Committee Report, 2008. Department of Health and Human Services; Washington, DC, USA: 2008. [Google Scholar]

147. Olesen J., Gustavsson A., Svensson M., Wittchen H.U., Jonsson B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012;19:155–162. doi: 10.1111/j.1468-1331.2011.03590.x. [PubMed] [CrossRef] [Google Scholar]

148. Josefsson T., Lindwall M., Archer T. Physical exercise intervention in depressive disorders: Meta-analysis and systematic review. Scand. J. Med. Sci. Sports. 2014;24:259–272. doi: 10.1111/sms.12050. [PubMed] [CrossRef] [Google Scholar]

149. Rosenbaum S., Tiedemann A., Sherrington C., Curtis J., Ward P.B. Physical activity interventions for people with mental illness: A systematic review and meta-analysis. J. Clin. Psychiatry. 2014;75:964–974. doi: 10.4088/JCP.13r08765. [PubMed] [CrossRef] [Google Scholar]

150. Aberg M.A., Waern M., Nyberg J., Pedersen N.L., Bergh Y., Aberg N.D., Nilsson M., Kuhn H.G., Toren K. Cardiovascular fitness in males at age 18 and risk of serious depression in adulthood: Swedish prospective population-based study. Br. J. Psychiatry. 2012;201:352–359. doi: 10.1192/bjp.bp.111.103416. [PubMed] [CrossRef] [Google Scholar]

151. Carroll D.D., Blanck H.M., Serdula M.K., Brown D.R. Obesity, physical activity, and depressive symptoms in a cohort of adults aged 51 to 61. J. Aging Health. 2010;22:384–398. doi: 10.1177/0898264309359421. [PubMed] [CrossRef] [Google Scholar]

152. Adamson B.C., Ensari I., Motl R.W. Effect of exercise on depressive symptoms in adults with neurologic disorders: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2015;96:1329–1338. doi: 10.1016/j.apmr.2015.01.005. [PubMed] [CrossRef] [Google Scholar]

153. Agudelo L.Z., Femenia T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159:33–45. doi: 10.1016/j.cell.2014.07.051. [PubMed] [CrossRef] [Google Scholar]

154. Schmidt-Kassow M., Deusser M., Thiel C., Otterbein S., Montag C., Reuter M., Banzer W., Kaiser J. Physical Exercise during Encoding Improves Vocabulary Learning in Young Female Adults: A Neuroendocrinological Study. PLoS ONE. 2013;8:e64172. doi: 10.1371/journal.pone.0064172. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., Kim J.S., Heo S., Alves H., White S.M., et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Winter B., Breitenstein C., Mooren F.C., Voelker K., Fobker M., Lechtermann A., Krueger K., Fromme A., Korsukewitz C., Floel A., et al. High impact running improves learning. Neurobiol. Learn. Mem. 2007;87:597–609. doi: 10.1016/j.nlm.2006.11.003. [PubMed] [CrossRef] [Google Scholar]

157. Oppezzo M., Schwartz D.L. Give your ideas some legs: The positive effect of walking on creative thinking. J. Exp. Psychol. 2014;40:1142–1152. doi: 10.1037/a0036577. [PubMed] [CrossRef] [Google Scholar]

158. Kramer A.F., Marquez D.X., McAuley E., Kim J.S., Erickson K.I., Hu L., Scalf P.E., Prakash R., Colcombe S.J., Elavsky S. Aerobic Exercise Training Increases Brain Volume in Aging Humans. J. Gerontol. 2006;61:1166–1170. doi: 10.1093/gerona/61.11.1166. [PubMed] [CrossRef] [Google Scholar]

159. Spielman L.J., Little J.P., Klegeris A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res. Bull. 2016;125:19–29. doi: 10.1016/j.brainresbull.2016.03.012. [PubMed] [CrossRef] [Google Scholar]

160. Soundy A., Freeman P., Stubbs B., Probst M., Roskell C., Vancampfort D. The Psychosocial Consequences of Sports Participation for Individuals with Severe Mental Illness: A Metasynthesis Review. Adv. Psychiatry. 2015;2015:8. doi: 10.1155/2015/261642. [CrossRef] [Google Scholar]

161. Hassmen P., Koivula N., Uutela A. Physical exercise and psychological well-being: A population study in Finland. Prev. Med. 2000;30:17–25. doi: 10.1006/pmed.1999.0597. [PubMed] [CrossRef] [Google Scholar]

162. Coakley J. Youth Sports: What Counts as “Positive Development?” J. Sport Soc. Issues. 2011;35:306–324. doi: 10.1177/0193723511417311. [CrossRef] [Google Scholar]

163. Seligman M.E.P. Positive Health. Appl. Psychol. 2008;57:3–18. doi: 10.1111/j.1464-0597.2008.00351.x. [CrossRef] [Google Scholar]

164. Rongen F., Cobley S., McKenna J., Till K. Talent identification and development. In: Baker J., Safai P., Fraser-Thomas J., editors. Health and Elite Sport: Is High Performance Sport a Healthy Pursuit? Taylor & Francis Group; London, UK: 2015. Routledge Research in Sport, Culture and Society. [Google Scholar]

165. Baker J., Fraser-Thomas J., Dionigi R.A., Horton S. Sport participation and positive development in older persons. Eur. Rev. Aging Phys. Act. 2010;7:3–12. doi: 10.1007/s11556-009-0054-9. [CrossRef] [Google Scholar]

166. Walsh D.W. Ph.D. Thesis. University of Texas at Austin; Austin, TX, USA: 2014. Sport as a Resource Caravan: Examining the Role and Efficacy of Sport as a Resource Provider for Adults in Transition. [Google Scholar]

167. Rehn A., Möller A. Den organiserade idrottens betydelse för spontanidrott. Gymnastik- och Idrottshögskolan; Stockholm, Sweden: 2011. [Google Scholar]

168. Ratzlaff C.R. Good news, bad news: Sports matter but occupational and household activity really matter - sport and recreation unlikely to be a panacea for public health. Br. J. Sports Med. 2012;46:699–701. doi: 10.1136/bjsports-2011-090800. [PubMed] [CrossRef] [Google Scholar]

169. Lewis C.J., Reeves M.J., Roberts S.J. Improving the physical and mental well-being of typically hard-to-reach men: An investigation of the impact of the Active Rovers project. Sport Soc. 2017;20:258–268. doi: 10.1080/17430437.2016.1173922. [CrossRef] [Google Scholar]

170. Dunleavy N. Proposed cuts to sport and recreation could hinder health of northern communities. CMAJ. 2008;178:1129. doi: 10.1503/cmaj.080361. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Kim J., Kim M., Henderson K.A., Han A., Park S.H. Serious engagement in sport and health benefits among Korean immigrants in the USA. Int. J. Qual. Stud. Health Well-Being. 2016;11:31340. doi: 10.3402/qhw.v11.31340. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Perrier M.J., Shirazipour C.H., Latimer-Cheung A.E. Sport participation among individuals with acquired physical disabilities: Group differences on demographic, disability, and Health Action Process Approach constructs. Disabil. Health J. 2015;8:216–222. doi: 10.1016/j.dhjo.2014.09.009. [PubMed] [CrossRef] [Google Scholar]

173. Engström L.-M. Who is physically active? Cultural capital and sports participation from adolescence to middle age—A 38-year follow-up study. Phys. Educ. Sport Pedagog. 2008;13:319–343. doi: 10.1080/17408980802400510. [CrossRef] [Google Scholar]

174. Brenner J.S., Council On Sports Medicine and Fitness Sports Specialization and Intensive Training in Young Athletes. Pediatrics. 2016;138 doi: 10.1542/peds.2016-2148. [PubMed] [CrossRef] [Google Scholar]

175. LaPrade R.F., Agel J., Baker J., Brenner J.S., Cordasco F.A., Cote J., Engebretsen L., Feeley B.T., Gould D., Hainline B., et al. AOSSM Early Sport Specialization Consensus Statement. Orthop. J. Sports Med. 2016;4:2325967116644241. doi: 10.1177/2325967116644241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Tan V.P., Macdonald H.M., Kim S., Nettlefold L., Gabel L., Ashe M.C., McKay H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative synthesis. J. Bone Miner. Res. 2014;29:2161–2181. doi: 10.1002/jbmr.2254. [PubMed] [CrossRef] [Google Scholar]

177. Timmons B.W., Leblanc A.G., Carson V., Connor Gorber S., Dillman C., Janssen I., Kho M.E., Spence J.C., Stearns J.A., Tremblay M.S. Systematic review of physical activity and health in the early years (aged 0-4 years) Appl. Physiol. Nutr. Metab. 2012;37:773–792. doi: 10.1139/h2012-070. [PubMed] [CrossRef] [Google Scholar]

178. Janssen I., Roberts K.C., Thompson W. Is adherence to the Canadian 24-Hour Movement Behaviour Guidelines for Children and Youth associated with improved indicators of physical, mental, and social health? Appl. Physiol. Nutr. Metab. 2017;42:725–731. doi: 10.1139/apnm-2016-0681. [PubMed] [CrossRef] [Google Scholar]

179. Fedewa M.V., Gist N.H., Evans E.M., Dishman R.K. Exercise and insulin resistance in youth: A meta-analysis. Pediatrics. 2014;133:e163–e174. doi: 10.1542/peds.2013-2718. [PubMed] [CrossRef] [Google Scholar]

180. Jayanthi N., Pinkham C., Dugas L., Patrick B., Labella C. Sports specialization in young athletes: Evidence-based recommendations. Sports Health. 2013;5:251–257. doi: 10.1177/1941738112464626. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Wattie N., Schorer J., Baker J. The relative age effect in sport: A developmental systems model. Sports Med. 2015;45:83–94. doi: 10.1007/s40279-014-0248-9. [PubMed] [CrossRef] [Google Scholar]

182. Delorme N., Raspaud M. The relative age effect in young French basketball players: A study on the whole population. Scand. J. Med. Sci. Sports. 2009;19:235–242. doi: 10.1111/j.1600-0838.2008.00781.x. [PubMed] [CrossRef] [Google Scholar]

183. Fumarco L., Gibbs B.G., Jarvis J.A., Rossi G. The relative age effect reversal among the National Hockey League elite. PLoS ONE. 2017;12:e0182827. doi: 10.1371/journal.pone.0182827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Geithner C.A., Molenaar C., Henriksson T., Fjellman-Wiklund A. Relative Age Effects in Women’s Ice Hockey. Women Sport Phys. Act. J. 2018;26:124–133. doi: 10.1123/wspaj.2017-0034. [CrossRef] [Google Scholar]

185. Gerdin G., Hedberg M., Hageskog C.A. Relative Age Effect in Swedish Male and Female Tennis Players Born in 1998(-)2001. Sports. 2018;6:38. doi: 10.3390/sports6020038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Jones C., Visek A.J., Barron M.J., Hyman M., Chandran A. Association between relative age effect and organisational practices of American youth football. J. Sports Sci. 2018:1–8. doi: 10.1080/02640414.2018.1546545. [PubMed] [CrossRef] [Google Scholar]

187. Edwards L.C., Bryant A.S., Keegan R.J., Morgan K., Cooper S.M., Jones A.M. ‘Measuring’ Physical Literacy and Related Constructs: A Systematic Review of Empirical Findings. Sports Med. 2017 doi: 10.1007/s40279-017-0817-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Bahr R. Demise of the fittest: Are we destroying our biggest talents? Br. J. Sports Med. 2014;48:1265–1267. doi: 10.1136/bjsports-2014-093832. [PubMed] [CrossRef] [Google Scholar]

189. Kenttä G., Svensson M. Idrottarens återhämtningsbok, fysiologiska, psykologiska och näringsmässiga fakta för snabb och effektiv återhämtning. SISU Idrottsböcker; Stockholm, Sweden: 2008. [Google Scholar]

190. Blair S.N., Kohl H.W., 3rd, Barlow C.E., Paffenbarger R.S., Jr., Gibbons L.W., Macera C.A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273:1093–1098. doi: 10.1001/jama.1995.03520380029031. [PubMed] [CrossRef] [Google Scholar]

191. Paffenbarger R.S., Jr., Kampert J.B., Lee I.M., Hyde R.T., Leung R.W., Wing A.L. Changes in physical activity and other lifeway patterns influencing longevity. Med. Sci. Sports Exerc. 1994;26:857–865. doi: 10.1249/00005768-199407000-00008. [PubMed] [CrossRef] [Google Scholar]

192. Rivera-Torres S., Fahey T.D., Rivera M.A. Adherence to Exercise Programs in Older Adults: Informative Report. Gerontol. Geriatr. Med. 2019;5:2333721418823604. doi: 10.1177/2333721418823604. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. McPhee J.S., French D.P., Jackson D., Nazroo J., Pendleton N., Degens H. Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology. 2016;17:567–580. doi: 10.1007/s10522-016-9641-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Hamer M., Lavoie K.L., Bacon S.L. Taking up physical activity in later life and healthy ageing: The English longitudinal study of ageing. Br. J. Sports Med. 2014;48:239–243. doi: 10.1136/bjsports-2013-092993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Cobley S., Baker J., Wattie N., McKenna J. Annual age-grouping and athlete development: A meta-analytical review of relative age effects in sport. Sports Med. 2009;39:235–256. doi: 10.2165/00007256-200939030-00005. [PubMed] [CrossRef] [Google Scholar]

196. Unhjem R., Nygard M., van den Hoven L.T., Sidhu S.K., Hoff J., Wang E. Lifelong strength training mitigates the age-related decline in efferent drive. J. Appl. Physiol. (Bethesda Md. 1985) 2016;121:415–423. doi: 10.1152/japplphysiol.00117.2016. [PubMed] [CrossRef] [Google Scholar]

197. Power G.A., Allen M.D., Gilmore K.J., Stashuk D.W., Doherty T.J., Hepple R.T., Taivassalo T., Rice C.L. Motor unit number and transmission stability in octogenarian world class athletes: Can age-related deficits be outrun? J. Appl. Physiol. (Bethesda Md. 1985) 2016;121:1013–1020. doi: 10.1152/japplphysiol.00149.2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Matelot D., Schnell F., Kervio G., Ridard C., Thillaye du Boullay N., Wilson M., Carre F. Cardiovascular Benefits of Endurance Training in Seniors: 40 is not too Late to Start. Int. J. Sports Med. 2016;37:625–632. doi: 10.1055/s-0035-1565237. [PubMed] [CrossRef] [Google Scholar]

199. Lepers R., Stapley P.J. Master Athletes Are Extending the Limits of Human Endurance. Front. Physiol. 2016;7:613. doi: 10.3389/fphys.2016.00613. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Parkkari J., Natri A., Kannus P., Manttari A., Laukkanen R., Haapasalo H., Nenonen A., Pasanen M., Oja P., Vuori I. A controlled trial of the health benefits of regular walking on a golf course. Am. J. Med. 2000;109:102–108. doi: 10.1016/S0002-9343(00)00455-1. [PubMed] [CrossRef] [Google Scholar]

201. Broman G., Johnsson L., Kaijser L. Golf: A high intensity interval activity for elderly men. Aging Clin. Exp. Res. 2004;16:375–381. doi: 10.1007/BF03324567. [PubMed] [CrossRef] [Google Scholar]

202. Kiss O., Sydo N., Vargha P., Edes E., Merkely G., Sydo T., Merkely B. Prevalence of physiological and pathological electrocardiographic findings in Hungarian athletes. Acta Physiol. Hung. 2015;102:228–237. doi: 10.1556/036.102.2015.2.13. [PubMed] [CrossRef] [Google Scholar]

203. Shapero K., Deluca J., Contursi M., Wasfy M., Weiner R.B., Lewis G.D., Hutter A., Baggish A.L. Cardiovascular Risk and Disease Among Masters Endurance Athletes: Insights from the Boston MASTER (Masters Athletes Survey to Evaluate Risk) Initiative. Sports Med. Open. 2016;2:29. doi: 10.1186/s40798-016-0053-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Yankelson L., Sadeh B., Gershovitz L., Werthein J., Heller K., Halpern P., Halkin A., Adler A., Steinvil A., Viskin S. Life-threatening events during endurance sports: Is heat stroke more prevalent than arrhythmic death? J. Am. Coll. Cardiol. 2014;64:463–469. doi: 10.1016/j.jacc.2014.05.025. [PubMed] [CrossRef] [Google Scholar]

205. Strimel W.J., O’Riordan M.J. Sudden cardiac arrest in long distance races: Considering the full context. J. Am. Coll. Cardiol. 2015;65:407–408. doi: 10.1016/j.jacc.2014.10.055. [PubMed] [CrossRef] [Google Scholar]

206. Piasecki M., Ireland A., Coulson J., Stashuk D.W., Hamilton-Wright A., Swiecicka A., Rutter M.K., McPhee J.S., Jones D.A. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: Evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol. Rep. 2016;4 doi: 10.14814/phy2.12987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Moreira N.B., Mazzardo O., Vagetti G.C., De Oliveira V., De Campos W. Quality of life perception of basketball master athletes: Association with physical activity level and sports injuries. J. Sports Sci. 2016;34:988–996. doi: 10.1080/02640414.2015.1082615. [PubMed] [CrossRef] [Google Scholar]

208. Haigh E.A.P., Bogucki O.E., Sigmon S.T., Blazer D.G. Depression Among Older Adults: A 20-Year Update on Five Common Myths and Misconceptions. Am. J. Geriatr. Psychiatry. 2018;26:107–122. doi: 10.1016/j.jagp.2017.06.011. [PubMed] [CrossRef] [Google Scholar]

209. Alfini A.J., Weiss L.R., Leitner B.P., Smith T.J., Hagberg J.M., Smith J.C. Hippocampal and Cerebral Blood Flow after Exercise Cessation in Master Athletes. Front. Aging Neurosci. 2016;8:184. doi: 10.3389/fnagi.2016.00184. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Lazarus N.R., Harridge S.D.R. Declining performance of master athletes: Silhouettes of the trajectory of healthy human ageing? J. Physiol. 2017;595:2941–2948. doi: 10.1113/JP272443. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Which principle in physical activity claims that in order to progress and improve our fitness we have to put our body under additional stress?

Overload means we must put our bodies under more stress than normal in order for adaptive changes to be made.

What principle should be followed to improve physical fitness?

The principles of specificity, progression, overload, adaptation, and reversibility are why practicing frequently and consistently are so important if you want to improve your performance.

What principle of exercise states that the only way to improve fitness is to increase one variable such as resistance or repetitions as your fitness level improves?

The overload principle is one of the seven big laws of fitness and training. Simply put, it says that you have to increase the intensity, duration, type, or time of a workout progressively in order to see adaptations. The adaptations are improvements in endurance, strength, or muscle size.

Is the principle of exercise that states that in order to improve your level of fitness you should gradually increase the frequency intensity and duration of your workouts?

The principle of progression states that you should increase overload, which can be achieved by using FITT (frequency, intensity, time, and type) when your body adapts to its present routine. The specificity principle states that only targeted exercises will improve specific fitness goals.