Which of the following could lead to a positive externality on the international scale?

  • PDFView PDF

Which of the following could lead to a positive externality on the international scale?

Which of the following could lead to a positive externality on the international scale?

Under a Creative Commons license

Open access

Abstract

Objective

Medicine is a scarce resource and a public good that benefits others by bettering patients’ health. COVID-19 vaccines in shortage are, 1) a scarce resource and 2) a public good with the positive externality of building herd immunity. These features are expected to drive citizens’ attitudes in opposite directions, exclusionist and inclusionist, respectively. Scarcity would drive citizens’ exclusionism, while the positive externality might mitigate exclusionism.

Setting and design

We recruited 15,000 Japanese adults and asked them to rank, in the context of a COVID-19 vaccine shortage, the deservingness of hypothetical vaccine recipients who differed according to 1) citizenship status, 2) visa type and duration of stay (if foreign), 3) occupation, 4) age, 5) whether they lived with a child, and 6) whether they lived with an elderly individual. Citizenship options were Japanese, Chinese, Taiwanese, South Korean, American, or European. The occupations were healthcare, education, other employed, self-employed, or not employed. The 6 attributes were randomly combined, and respondents were shown 3 hypothetical vaccine recipients: one was Japanese, and the others were foreigners.

Treatments

First, through a conjoint design, we created hypothetical vaccine recipients whose attributes were randomized except for the benchmark citizenship, Japanese national. Second, we randomly presented two scenarios for vaccination payments: 1) billed at cost or 2) fully subsidized by the government.

Results

1) Whether the vaccines were billed at cost or fully subsidized did not affect the rankings of deservingness. 2) Japanese citizenship was prioritized. 3) The penalty for being a foreigner was higher for individuals from nations with which Japan has geopolitical tensions. 4) Working in health or education reduced the penalty on foreigners, indicating that the positive externality related to occupation amplifies the positive externality associated with vaccination and mitigates exclusionist attitudes.

Conclusions

The positive occupational externalities that amplify the positive externality of vaccination substantially allay the foreigner penalty.

Keywords

Herd immunity

Deservingness

Positive medical externality

Positive occupational externality

Geopolitical concerns

Immigrant discrimination

Data availability

Data will be made available on request.

Cited by (0)

© 2022 The Authors. Published by Elsevier Ltd.

1. Landrigan P., Fuller R., Haines A., Watts N., McCarthy G. Pollution prevention and climate change mitigation: Measuring the health benefits of comprehensive interventions. Lancet Planet. Heal. 2018;2:e515–e516. doi: 10.1016/S2542-5196(18)30226-2. [PubMed] [CrossRef] [Google Scholar]

2. Council N.R. America’s Climate Choices. National Academies Press; Washington, DC, USA: 2011. [Google Scholar]

3. Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N., Baldé A.B., Bertollini R., Bose-O’Reilly S., Boufford J.I., et al. The Lancet Commission on pollution and health. Lancet. 2018;391:462–512. doi: 10.1016/S0140-6736(17)32345-0. [PubMed] [CrossRef] [Google Scholar]

4. Haines A., Kovats R.S., Campbell-Lendrum D., Corvalan C. Climate change and human health: Impacts, vulnerability, and mitigation. Lancet. 2006;367:2101–2109. doi: 10.1016/S0140-6736(06)68933-2. [PubMed] [CrossRef] [Google Scholar]

5. OECD Emissions, Reducing Transport Greenhouse Gas: Trends & Data 2010; Proceedings of the International Transport Forum, Organisation for Economic Cooperation and Development; Leipzig, Germany. 26–28 May 2010; [(accessed on 2 March 2021)]. Available online: http://www.indiaenvironmentportal.org.in/files/10GHGTrends.pdf [Google Scholar]

6. Kwan S.C., Hashim J.H. A review on co-benefits of mass public transportation in climate change mitigation. Sustain. Cities Soc. 2016;22:11–18. doi: 10.1016/j.scs.2016.01.004. [CrossRef] [Google Scholar]

7. Assad S.W. The rise of consumerism in Saudi Arabian society. Int. J. Commer. Manag. 2007;17:73–104. doi: 10.1108/10569210710774767. [CrossRef] [Google Scholar]

10. Parikh J., Shukla V. Urbanization, energy use and greenhouse effects in economic development: Results from a cross-national study of developing countries. Glob. Environ. Chang. 1995;5:87–103. doi: 10.1016/0959-3780(95)00015-G. [CrossRef] [Google Scholar]

11. Ala-Mantila S., Heinonen J., Junnila S. Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis. Ecol. Econ. 2014;104:129–139. doi: 10.1016/j.ecolecon.2014.04.019. [CrossRef] [Google Scholar]

12. Watts N., Adger W.N., Agnolucci P., Blackstock J., Byass P., Cai W., Chaytor S., Colbourn T., Collins M., Cooper A., et al. Health and climate change: Policy responses to protect public health. Lancet. 2015;386:1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [PubMed] [CrossRef] [Google Scholar]

13. Kjellstrom T., Weaver H.J. Climate change and health: Impacts, vulnerability, adaptation and mitigation. N. S. W. Public Health Bull. 2009;20:5–9. doi: 10.1071/NB08053. [PubMed] [CrossRef] [Google Scholar]

14. Robinson C., Dilkina B., Moreno-Cruz J. Modeling migration patterns in the USA under sea level rise. PLoS ONE. 2020;15:e0227436. doi: 10.1371/journal.pone.0227436. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Vos T., Lim S.S., Abbafati C., Abbas K.M., Abbasi M., Abbasifard M., Abbasi-Kangevari M., Abbastabar H., Abd-Allah F., Abdelalim A. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–1222. doi: 10.1016/S0140-6736(20)30925-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Cardona O.-D., van Aalst M.K., Birkmann J., Fordham M., McGregor G., Perez R., Pulwarty R.S., Lisa Schipper E.F., Tan Sinh B., Décamps H., et al. Determinants of Risk: Exposure and Vulnerabilit: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation 2 Determinants of Risk: Exposure and Vulnerability. Intergovernmental Panel on Climate Change; Melbourne, Australia: 2012. [Google Scholar]

17. Thomas K., Hardy R.D., Lazrus H., Mendez M., Orlove B., Rivera-Collazo I., Roberts J.T., Rockman M., Warner B.P., Winthrop R. Explaining differential vulnerability to climate change: A social science review. Wiley Interdiscip. Rev. Clim. Chang. 2019;10:e565. doi: 10.1002/wcc.565. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. McMichael A.J. Globalization, Climate Change, and Human Health. N. Engl. J. Med. 2013;368:1335–1343. doi: 10.1056/NEJMra1109341. [PubMed] [CrossRef] [Google Scholar]

21. Bustamante M.M.C., Silva J.S., Scariot A., Sampaio A.B., Mascia D.L., Garcia E., Sano E., Fernandes G.W., Durigan G., Roitman I., et al. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Chang. 2019;24:1249–1270. doi: 10.1007/s11027-018-9837-5. [CrossRef] [Google Scholar]

22. Ramesh R., Banerjee K., Paneerselvam A., Raghuraman R., Purvaja R., Lakshmi A. Importance of Seagrass Management for Effective Mitigation of Climate Change. Elsevier Inc.; Amsterdan, The Netherlands: 2019. [Google Scholar]

23. Organisation for Economic Cooperation and Development: Handbook on the OECD-DAC Climate Markers. [(accessed on 2 January 2020)]; Available online: http://www.oecd.org/dac/stats/48785310.pdf.

25. Lempert R.J., Arnold J.R., Pulwarty R.S., Gordon K., Greig K., Hawkins-Hoffman C., Sands D., Werrell C. Chapter 28: Adaptation Response. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II. Intergovermental Panel on Climate Change; Washington, DC, USA: 2018. [Google Scholar]

26. Deb A., Kanungo S., Deb M., Nair G. Impact of climate change on health and strategies for mitigation and adaptation. WHO South-East Asia J. Public Heal. 2012;1:8. doi: 10.4103/2224-3151.206918. [PubMed] [CrossRef] [Google Scholar]

27. Harlan S.L., Ruddell D.M. Climate change and health in cities: Impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Curr. Opin. Environ. Sustain. 2011;3:126–134. doi: 10.1016/j.cosust.2011.01.001. [CrossRef] [Google Scholar]

28. Kim E.J. The impacts of climate change on human health in the United States: A scientific assessment, by us global change research program. J. Am. Plan. Assoc. 2016;82:418–419. doi: 10.1080/01944363.2016.1218736. [CrossRef] [Google Scholar]

30. Hauer M.E., Evans J.M., Mishra D.R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Chang. 2016;6:691–695. doi: 10.1038/nclimate2961. [CrossRef] [Google Scholar]

31. Prüss-Ustün A., van Deventer E., Mudu P., Campbell-Lendrum D., Vickers C., Ivanov I., Forastiere F., Gumy S., Dora C., Adair-Rohani H. Environmental risks and non-communicable diseases. Bmj. 2019;364:1265. doi: 10.1136/bmj.l265. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Kjellstrom T., Butler A.J., Lucas R.M., Bonita R. Public health impact of global heating due to climate change: Potential effects on chronic non-communicable diseases. Int. J. Public Health. 2010;55:97–103. doi: 10.1007/s00038-009-0090-2. [PubMed] [CrossRef] [Google Scholar]

33. Shuman E.K. Global climate change and infectious diseases. N. Engl. J. Med. 2010;362:1061–1063. doi: 10.1056/NEJMp0912931. [PubMed] [CrossRef] [Google Scholar]

34. Wu X., Lu Y., Zhou S., Chen L., Xu B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016;86:14–23. doi: 10.1016/j.envint.2015.09.007. [PubMed] [CrossRef] [Google Scholar]

35. Liang L., Gong P. Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Environ. Int. 2017;103:99–108. doi: 10.1016/j.envint.2017.03.011. [PubMed] [CrossRef] [Google Scholar]

36. Kishore N., Marqués D., Mahmud A., Kiang M.V., Rodriguez I., Fuller A., Ebner P., Sorensen C., Racy F., Lemery J. Mortality in puerto rico after hurricane maria. N. Engl. J. Med. 2018;379:162–170. doi: 10.1056/NEJMsa1803972. [PubMed] [CrossRef] [Google Scholar]

37. Smith K.R., Woodward A., Campbell-Lendrum D., Chadee Trinidad D.D., Honda Y., Liu Q., Aranda C., Berry H. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: 2014. Human Health: Impacts, Adaptation, and Co-Benefits; pp. 709–754. [Google Scholar]

38. Rice M.B., Thurston G.D., Balmes J.R., Pinkerton K.E. Climate change. A global threat to cardiopulmonary health. Am. J. Respir. Crit. Care Med. 2014;189:512–519. doi: 10.1164/rccm.201310-1924PP. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. United States Global Change Research Program (USGCRP) Fourth National Climate Assessment, Volume II: Impacts, Risks, and Adaptation in the United States. [(accessed on 24 January 2021)]; Available online: https://nca2018.globalchange.gov/

40. Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change; Geneva, Switzerland: 2014. [Google Scholar]

41. Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P., Dubash N.K. IPCC Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis Report. Intergovernmental Panel on Climate Change; Geneva, Switzerland: 2014. [Google Scholar]

42. Fouillet A., Rey G., Laurent F., Pavillon G., Bellec S., Guihenneuc-Jouyaux C., Clavel J., Jougla E., Hémon D. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health. 2006;80:16–24. doi: 10.1007/s00420-006-0089-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Curriero F.C., Heiner K.S., Samet J.M., Zeger S.L., Strug L., Patz J.A. Temperature and Mortality in 11 Cities of the Eastern United States. Am. J. Epidemiol. 2002;155:80–87. doi: 10.1093/aje/155.1.80. [PubMed] [CrossRef] [Google Scholar]

44. Watts N., Amann M., Arnell N., Ayeb-Karlsson S., Beagley J., Belesova K., Boykoff M., Byass P., Cai W., Campbell-Lendrum D. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet. 2020 [PubMed] [Google Scholar]

45. Le Houérou H.N. Climate change, drought and desertification. J. Arid Environ. 1996;34:133–185. doi: 10.1006/jare.1996.0099. [CrossRef] [Google Scholar]

46. Goudie A.S., Middleton N.J. The changing frequency of dust storms through time. Clim. Chang. 1992;20:197–225. doi: 10.1007/BF00139839. [CrossRef] [Google Scholar]

47. Chan C.-C., Chuang K.-J., Chen W.-J., Chang W.-T., Lee C.-T., Peng C.-M. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environ. Res. 2008;106:393–400. doi: 10.1016/j.envres.2007.09.006. [PubMed] [CrossRef] [Google Scholar]

48. Yang C.-Y., Chen Y.-S., Chiu H.-F., Goggins W.B. Effects of Asian dust storm events on daily stroke admissions in Taipei, Taiwan. Environ. Res. 2005;99:79–84. doi: 10.1016/j.envres.2004.12.009. [PubMed] [CrossRef] [Google Scholar]

49. Rublee C.S., Sorensen C.J., Lemery J., Wade T.J., Sams E.A., Hilborn E.D., Crooks J.L. Associations between dust storms and intensive care unit admissions in the United States, 2000–2015. GeoHealth. 2020;4:e2020GH000260. doi: 10.1029/2020GH000260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Perez L., Tobías A., Querol X., Pey J., Alastuey A., Díaz J., Sunyer J. Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain) Environ. Int. 2012;48:150–155. doi: 10.1016/j.envint.2012.07.001. [PubMed] [CrossRef] [Google Scholar]

51. Kanatani K.T., Ito I., Al-Delaimy W.K., Adachi Y., Mathews W.C., Ramsdell J.W. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am. J. Respir. Crit. Care Med. 2010;182:1475–1481. doi: 10.1164/rccm.201002-0296OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Cheng M.-F., Ho S.-C., Chiu H.-F., Wu T.-N., Chen P.-S., Yang C.-Y. Consequences of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, Taiwan. J. Toxicol. Environ. Heal. Part A. 2008;71:1295–1299. doi: 10.1080/15287390802114808. [PubMed] [CrossRef] [Google Scholar]

53. World Health Organization Flooding and communicable diseases fact sheet. Wkly. Epidemiol. Rec. Relev. Epidemiol Hebd. 2005;80:21–28. [PubMed] [Google Scholar]

54. Brown L., Murray V. Examining the relationship between infectious diseases and flooding in Europe: A systematic literature review and summary of possible public health interventions. Disaster Heal. 2013;1:117–127. doi: 10.4161/dish.25216. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Panic M., Ford J.D. A review of national-level adaptation planning with regards to the risks posed by climate change on infectious diseases in 14 OECD nations. Int. J. Environ. Res. Public Health. 2013;10:7083–7109. doi: 10.3390/ijerph20127083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Greer A., Ng V., Fisman D. Climate change and infectious diseases in North America: The road ahead. CMAJ. 2008;178:715–722. [PMC free article] [PubMed] [Google Scholar]

57. Deeb R., Tufford D., Scott G.I., Moore J.G., Dow K. Impact of climate change on Vibrio vulnificus abundance and exposure risk. Estuaries Coasts. 2018;41:2289–2303. doi: 10.1007/s12237-018-0424-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Brokamp C., Beck A.F., Muglia L., Ryan P. Combined sewer overflow events and childhood emergency department visits: A case-crossover study. Sci. Total Environ. 2017;607:1180–1187. doi: 10.1016/j.scitotenv.2017.07.104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Henderson S.B., Johnston F.H. Measures of forest fire smoke exposure and their associations with respiratory health outcomes. Curr. Opin. Allergy Clin. Immunol. 2012;12:221–227. doi: 10.1097/ACI.0b013e328353351f. [PubMed] [CrossRef] [Google Scholar]

61. Rappold A.G., Stone S.L., Cascio W.E., Neas L.M., Kilaru V.J., Carraway M.S., Szykman J.J., Ising A., Cleve W.E., Meredith J.T. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Health Perspect. 2011;119:1415–1420. doi: 10.1289/ehp.1003206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Rappold A.G., Cascio W.E., Kilaru V.J., Stone S.L., Neas L.M., Devlin R.B., Diaz-Sanchez D. Cardio-respiratory outcomes associated with exposure to wildfire smoke are modified by measures of community health. Environ. Heal. 2012;11:1–9. doi: 10.1186/1476-069X-11-71. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Hänninen O.O., Salonen R.O., Koistinen K., Lanki T., Barregard L., Jantunen M. Population exposure to fine particles and estimated excess mortality in Finland from an East European wildfire episode. J. Expo. Sci. Environ. Epidemiol. 2009;19:414–422. doi: 10.1038/jes.2008.31. [PubMed] [CrossRef] [Google Scholar]

64. Kovats R.S., Campbell-Lendrum D., Matthies F. Climate change and human health: Estimating avoidable deaths and disease. Risk Anal. 2005;25:1409–1418. doi: 10.1111/j.1539-6924.2005.00688.x. [PubMed] [CrossRef] [Google Scholar]

65. Frankovic I. The Impact of Climate Change on Health Expenditures. Institut für Stochastik und Wirtschaftsmathematik; TU Wien, Austria: 2017. [Google Scholar]

67. McMichael C. Human mobility, climate change, and health: Unpacking the connections. Lancet Planet. Heal. 2020;4:e217–e218. doi: 10.1016/S2542-5196(20)30125-X. [PubMed] [CrossRef] [Google Scholar]

69. Gamble J.L., Balbus J., Berger M., Bouye K., Campbell V., Chief K., Conlon K., Crimmins A., Flanagan B., Gonzalez-Maddux C. Ch. 9: Populations of Concern. US Global Change Research Program; Washington, DC, USA: 2016. [Google Scholar]

70. Philipsborn R.P., Chan K. Climate change and global child health. Pediatrics. 2018;141 doi: 10.1542/peds.2017-3774. [PubMed] [CrossRef] [Google Scholar]

71. Patz J.A., Gibbs H.K., Foley J.A., Rogers J.V., Smith K.R. Climate change and global health: Quantifying a growing ethical crisis. Ecohealth. 2007;4:397–405. doi: 10.1007/s10393-007-0141-1. [CrossRef] [Google Scholar]

72. Levy B.S., Patz J.A. Climate change, human rights, and social justice. Ann. Glob. Heal. 2015;81:310–322. doi: 10.1016/j.aogh.2015.08.008. [PubMed] [CrossRef] [Google Scholar]

73. Hoffman J.S., Shandas V., Pendleton N. The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 US urban areas. Climate. 2020;8:12. doi: 10.3390/cli8010012. [CrossRef] [Google Scholar]

74. Nardone A., Rudolph K.E., Morello-Frosch R., Casey J.A. Redlines and Greenspace: The Relationship between Historical Redlining and 2010 Greenspace across the United States. Environ. Health Perspect. 2021;129:17006. doi: 10.1289/EHP7495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Fleischman L., Franklin M. Fumes across the Fence-Line: The Health Impacts of air Pollution from Oil & Gas Facilities on African American Communities. Boston Branch NAACP; Roxbury, MA, USA: 2017. [Google Scholar]

76. Browne D. Strategies to Protect the Planet can Reduce Cancer, Too. J. Natl. Med. Assoc. 2018;110:2–3. doi: 10.1016/j.jnma.2018.01.007. [PubMed] [CrossRef] [Google Scholar]

78. Dugard J., Alcaro A. Let’s work together: Environmental and socioeconomic rights in the courts. S. Afr. J. Hum. Rights. 2013;29:14–31. doi: 10.1080/19962126.2013.11865064. [CrossRef] [Google Scholar]

79. Thind M.P.S., Tessum C.W., Azevedo I.L., Marshall J.D. Fine particulate air pollution from electricity generation in the US: Health impacts by race, income, and geography. Environ. Sci. Technol. 2019;53:14010–14019. doi: 10.1021/acs.est.9b02527. [PubMed] [CrossRef] [Google Scholar]

80. Ragavan M.I., Marcil L.E., Garg A. Climate Change as a Social Determinant of Health. Pediatrics. 2020;145:e20193169. doi: 10.1542/peds.2019-3169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Bekkar B., Pacheco S., Basu R., DeNicola N. Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: A systematic review. JAMA Netw. open. 2020;3:e208243. doi: 10.1001/jamanetworkopen.2020.8243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Suglia S.F., Gryparis A., Schwartz J., Wright R.J. Association between traffic-related black carbon exposure and lung function among urban women. Environ. Health Perspect. 2008;116:1333–1337. doi: 10.1289/ehp.11223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Sekine K., Shima M., Nitta Y., Adachi M. Long term effects of exposure to automobile exhaust on the pulmonary function of female adults in Tokyo, Japan. Occup. Environ. Med. 2004;61:350–357. doi: 10.1136/oem.2002.005934. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Kan H., Heiss G., Rose K.M., Whitsel E., Lurmann F., London S.J. Traffic exposure and lung function in adults: The Atherosclerosis Risk in Communities study. Thorax. 2007;62:873–879. doi: 10.1136/thx.2006.073015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Gan W.Q., FitzGerald J.M., Carlsten C., Sadatsafavi M., Brauer M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am. J. Respir. Crit. Care Med. 2013;187:721–727. doi: 10.1164/rccm.201211-2004OC. [PubMed] [CrossRef] [Google Scholar]

87. Nichols J.L., Owens E.O., Dutton S.J., Luben T.J. Systematic review of the effects of black carbon on cardiovascular disease among individuals with pre-existing disease. Int. J. Public Health. 2013;58:707–724. doi: 10.1007/s00038-013-0492-z. [PubMed] [CrossRef] [Google Scholar]

88. Smith K.R., Jerrett M., Anderson H.R., Burnett R.T., Stone V., Derwent R., Atkinson R.W., Cohen A., Shonkoff S.B., Krewski D. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet. 2009;374:2091–2103. doi: 10.1016/S0140-6736(09)61716-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Wu X., Nethery R.C., Sabath M.B., Braun D., Dominici F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci. Adv. 2020;6:eabd4049. doi: 10.1126/sciadv.abd4049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Limaye V.S., Max W., Constible J., Knowlton K. Estimating the Health-Related Costs of 10 Climate-Sensitive U.S. Events During 2012. GeoHealth. 2019;3:245–265. doi: 10.1029/2019GH000202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Knowlton K., Rotkin-Ellman M., Geballe L., Max W., Solomon G.M. Six climate change-related events in the United States accounted for about $14 billion in lost lives and health costs. Health Aff. 2011;30:2167–2176. doi: 10.1377/hlthaff.2011.0229. [PubMed] [CrossRef] [Google Scholar]

92. National Centers for Environmental Information Billion-Dollar Weather and Climate Disasters: Overview. [(accessed on 25 January 2021)]; Available online: https://www.ncdc.noaa.gov/billions/

93. International Federation of Red Cross and Red Crescent Societies . World Disasters Report 2020. International Federation of Red Cross and Red Crescent Societies; Geneva, Switzerland: 2020. [Google Scholar]

95. Awumbila M. Drivers of Migration and Urbanization in Africa: Key Trends and Issues. UN Expert Group Meeting on Sustainable Cities, Human Mobility and International Migration; New York, NY, USA: 2017. [Google Scholar]

96. Blaine T., Ryan S., Zermoglio F., Quinn C. Understanding and Responding to the Shifting Burden of Disease: Malaria Risks in Africa Under a Changing Climate. [(accessed on 2 March 2021)]; Available online: https://ui.adsabs.harvard.edu/abs/2018AGUFMGH21C1084B/abstract

97. Quinn C., Blaine T., Zermoglio F., Colborn J., Ebi K. Integrating Climate Change and Variability into Infectious Disease Decision Making: Lessons from sub-Saharan. [(accessed on 2 March 2021)];2018 :1–2. Available online: https://ui.adsabs.harvard.edu/abs/2018AGUFMGH23A..07Q/abstract

98. Nshimiyimana L., Onyambu P.M., Rutayisire E. Diarrhoeal Diseases in Children Under Five Years Exhibited Space-Time Disparities and Priority Areas for Control Interventions in Rwanda CURRENT STATUS: UNDER REVIEW. Int. J. Health Geogr. 2019:1–20. [Google Scholar]

99. Korukire N., Bozzi L., Banamwana G., Birasa L., Ineza M.C., Rumagihwa L., Cishahayo E.U., Kayitesi I., Akanbi M.O. Climate Change and Mental Health: New Model of Managing Mental Health Illness Resulting From Climate Change Events. Rwanda Perspective. Rwanda J. Med. Heal. Sci. 2019;2:62–65. doi: 10.4314/rjmhs.v2i1.11. [CrossRef] [Google Scholar]

100. Kirby M., Nagel C., Uejio C., Okull P., Nsabimana J.A., Habyarimana J., Clasen T. Effect of precipitation on clinic-diagnosed enteric infections in children in Rwanda: An observational study. Lancet Planet. Heal. 2018;2:S14. doi: 10.1016/S2542-5196(18)30099-8. [CrossRef] [Google Scholar]

101. Kula N., Haines A., Fryatt R. Reducing Vulnerability to Climate Change in Sub-Saharan Africa: The Need for Better Evidence. PLoS Med. 2013;10 doi: 10.1371/journal.pmed.1001374. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Matinga M.N., Clancy J.S., Annegarn H.J. Explaining the non-implementation of health-improving policies related to solid fuels use in South Africa. Energy Policy. 2014;68:53–59. doi: 10.1016/j.enpol.2013.10.040. [CrossRef] [Google Scholar]

103. Scorgie Y., Annegarn H., Burger L. Study to Examine the Potential Socio-Economic Impact of Measures to Reduce Air Pollution from Combustion. University of Johannesburg; Johannesburg, South Africa: 2004. [Google Scholar]

104. Norman R., Cairncross E., Witi J., Bradshaw D., Collaboration S.A.C.R.A. Estimating the burden of disease attributable to urban outdoor air pollution in South Africa in 2000. S. Afr. Med. J. 2007;97:782–790. [PubMed] [Google Scholar]

105. Shirinde J., Wichmann J., Voyi K. Association between wheeze and selected air pollution sources in an air pollution priority area in South Africa: A cross-sectional study. Environ. Heal. 2014;13:32. doi: 10.1186/1476-069X-13-32. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Bikomeye J.C. Ph.D. Thesis. Mount Kenya University; Thika, Kenya: 2017. Knowledge and Practices towards Malnutrition AMONG caregivers of Under Five Children in Ngoma District, Rwanda. [Google Scholar]

107. Stanke C., Kerac M., Prudhomme C., Medlock J., Murray V. Health effects of drought: A systematic review of the evidence. PLoS Curr. 2013;5:5. doi: 10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Campbell-Lendrum D.H., Corvalan C.F., Prüss Ustün A. How much disease could climate change cause. Clim. Chang. Hum. Heal. Risks Responses. Geneva WHO. 2003:133–158. [Google Scholar]

109. Cline W.R. Global Warming and Agriculture: Impact Estimates by Country. Center for Global Development, Peterson Institute for International Economics; Washington DC, USA: 2007. [Google Scholar]

110. Cooper P.J.M., Dimes J., Rao K.P.C., Shapiro B., Shiferaw B., Twomlow S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008;126:24–35. doi: 10.1016/j.agee.2008.01.007. [CrossRef] [Google Scholar]

111. World Food Program . Rwanda Comprehensive Food Security and Vulnerability Analysis: World Food Program. World Food Program; Kigali, Rwanda: 2015. [Google Scholar]

112. Grace K., Davenport F., Funk C., Lerner A.M. Child malnutrition and climate in Sub-Saharan Africa: An analysis of recent trends in Kenya. Appl. Geogr. 2012;35:405–413. doi: 10.1016/j.apgeog.2012.06.017. [CrossRef] [Google Scholar]

113. United Nations Development Programme . Climate Change Adaptation in Africa: UNDP Synthesis of Experiences and Recommendations. United Nations Development Programme; Thailand, Bangkok: 2018. [Google Scholar]

114. Thompson H.E., Berrang-Ford L., Ford J.D. Climate change and food security in sub-Saharan Africa: A systematic literature review. Sustainability. 2010;2:2719–2733. doi: 10.3390/su2082719. [CrossRef] [Google Scholar]

117. Paridaens A.-M., Jayasinghe S. Rwanda 2018 Comprehensive Food Security and Vulnerability Analysis. National Institute of Statistics of Rwanda; Kigali, Rwanda: 2018. [Google Scholar]

118. Twongyirwe R., Mfitumukiza D., Barasa B., Naggayi B.R., Odongo H., Nyakato V., Mutoni G. Perceived effects of drought on household food security in South-western Uganda: Coping responses and determinants. Weather Clim. Extrem. 2019;24:100201. doi: 10.1016/j.wace.2019.100201. [CrossRef] [Google Scholar]

119. Afifi T., Liwenga E., Kwezi L. Rainfall-induced crop failure, food insecurity and out-migration in Same-Kilimanjaro, Tanzania. Clim. Dev. 2014;6:53–60. doi: 10.1080/17565529.2013.826128. [CrossRef] [Google Scholar]

120. Emaziye P.O., Okoh R.N., Ike P.C. An Evaluation of Effect of Climate Change on Food Security of Rural Households in Cross River State, Nigeria. Asian J. Agric. Sci. 2013;5:56–61. doi: 10.19026/ajas.5.4842. [CrossRef] [Google Scholar]

121. Burke A., Fishel S. A coal elimination treaty 2030: Fast tracking climate change mitigation, global health and security. Earth Syst. Gov. 2020:100046. doi: 10.1016/j.esg.2020.100046. [CrossRef] [Google Scholar]

122. Meinshausen M., Meinshausen N., Hare W., Raper S.C.B., Frieler K., Knutti R., Frame D.J., Allen M.R. Greenhouse-gas emission targets for limiting global warming to 2 C. Nature. 2009;458:1158–1162. doi: 10.1038/nature08017. [PubMed] [CrossRef] [Google Scholar]

123. Shindell D., Faluvegi G., Seltzer K., Shindell C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Chang. 2018;8:291–295. doi: 10.1038/s41558-018-0108-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Widder L. Earth eco-building: Textile-reinforced earth block construction. Energy Procedia. 2017;122:757–762. doi: 10.1016/j.egypro.2017.07.392. [CrossRef] [Google Scholar]

125. Devi K.S., Lakshmi V.V., Alakanandana A. Impacts of cement industry on environment-an overview. Asia Pac. J. Res. 2017;1:156–161. [Google Scholar]

126. Sugiyama M. Climate change mitigation and electrification. Energy Policy. 2012;44:464–468. doi: 10.1016/j.enpol.2012.01.028. [CrossRef] [Google Scholar]

127. Frizen K. Aggregate effect of the intended nationally determined contributions: An update; Proceedings of the Conference of the Parties Twenty—Second Session; Marrakech, Morocco. 7–18 November 2016. [Google Scholar]

128. Tambo E., Duo-quan W., Zhou X.-N. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement. Environ. Int. 2016;95:152–156. doi: 10.1016/j.envint.2016.04.010. [PubMed] [CrossRef] [Google Scholar]

129. Gallagher K.S., Zhang F., Orvis R., Rissman J., Liu Q. Assessing the Policy gaps for achieving China’s climate targets in the Paris Agreement. Nat. Commun. 2019;10 doi: 10.1038/s41467-019-09159-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Center for Climate and Energy Solutions . China’s Nationally Determined Contributions to the Paris Agreement. Center for Climate and Energy Solutions; Arlington, VA, USA: 2015. [Google Scholar]

131. Vennemo H., Aunan K., Jinghua F., Holtedahl P., Tao H., Seip H.M. Domestic environmental benefits of China’s energy-related CDM potential. Clim. Chang. 2006;75:215–239. doi: 10.1007/s10584-006-1834-0. [CrossRef] [Google Scholar]

132. Klausbruckner C., Annegarn H., Henneman L.R.F., Rafaj P. A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies. Environ. Sci. Policy. 2016;57:70–78. doi: 10.1016/j.envsci.2015.12.001. [CrossRef] [Google Scholar]

133. Department of Environmental Affairs . National Climate Change Response: White Paper. Department of Environmental Affairs; Pretoria, South Africa: 2012. [Google Scholar]

134. Papafotiou E., Katsifarakis K.L. Ecological Rainwater Management in Urban Areas. Preliminary Considerations for the City of Corinth, Greece. Agric. Agric. Sci. Procedia. 2015;4:383–391. doi: 10.1016/j.aaspro.2015.03.043. [CrossRef] [Google Scholar]

135. Chiang Y.-C., Sullivan W., Larsen L. Measuring neighborhood walkable environments: A comparison of three approaches. Int. J. Environ. Res. Public Health. 2017;14:593. doi: 10.3390/ijerph24060593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Kabisch N., Frantzeskaki N., Pauleit S., Naumann S., Davis M., Artmann M., Haase D., Knapp S., Korn H., Stadler J. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016:21. doi: 10.5751/ES-08373-210239. [CrossRef] [Google Scholar]

137. Eggermont H., Balian E., Azevedo J.M.N., Beumer V., Brodin T., Claudet J., Fady B., Grube M., Keune H., Lamarque P. Nature-based solutions: New influence for environmental management and research in Europe. GAIA-Ecological Perspect. Sci. Soc. 2015;24:243–248. doi: 10.14512/gaia.24.4.9. [CrossRef] [Google Scholar]

138. Ziervogel G., New M., Archer van Garderen E., Midgley G., Taylor A., Hamann R., Stuart-Hill S., Myers J., Warburton M. Climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Chang. 2014;5:605–620. doi: 10.1002/wcc.295. [CrossRef] [Google Scholar]

139. Alemayehu F.R., Bendevis M.A., Jacobsen S.E. The Potential for Utilizing the Seed Crop Amaranth (Amaranthus spp.) in East Africa as an Alternative Crop to Support Food Security and Climate Change Mitigation. J. Agron. Crop Sci. 2015;201:321–329. doi: 10.1111/jac.12108. [CrossRef] [Google Scholar]

140. Elum Z.A., Modise D.M., Marr A. Farmer’s perception of climate change and responsive strategies in three selected provinces of South Africa. Clim. Risk Manag. 2017;16:246–257. doi: 10.1016/j.crm.2016.11.001. [CrossRef] [Google Scholar]

141. Friel S., Dangour A.D., Garnett T., Lock K., Chalabi Z., Roberts I., Butler A., Butler C.D., Waage J., McMichael A.J., et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Food and agriculture. Lancet. 2009;374:2016–2025. doi: 10.1016/S0140-6736(09)61753-0. [PubMed] [CrossRef] [Google Scholar]

142. Hu F.B., Manson J.E., Willett W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001;20:5–19. doi: 10.1080/07315724.2001.10719008. [PubMed] [CrossRef] [Google Scholar]

143. Stoeckli R., Keller U. Nutritional fats and the risk of type 2 diabetes and cancer. Physiol. Behav. 2004;83:611–615. doi: 10.1016/j.physbeh.2004.07.030. [PubMed] [CrossRef] [Google Scholar]

145. Bowler D.E., Buyung-Ali L., Knight T.M., Pullin A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010;97:147–155. doi: 10.1016/j.landurbplan.2010.05.006. [CrossRef] [Google Scholar]

146. Nurse J., Basher D., Bone A., Bird W. An ecological approach to promoting population mental health and well-being—A response to the challenge of climate change. Perspect. Public Health. 2010;130:27–33. doi: 10.1177/1757913909355221. [PubMed] [CrossRef] [Google Scholar]

147. Lipper L., Thornton P., Campbell B.M., Baedeker T., Braimoh A., Bwalya M., Caron P., Cattaneo A., Garrity D., Henry K., et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014;4:1068–1072. doi: 10.1038/nclimate2437. [CrossRef] [Google Scholar]

148. McCarthy N., Lipper L., Branca G. Climate-smart agriculture: Smallholder adoption and implications for climate change adaptation and mitigation. Mitig. Clim. Chang. Agric. Work. Pap. 2011;3:1–37. [Google Scholar]

150. Khatri-Chhetri A., Aggarwal P.K., Joshi P.K., Vyas S. Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 2017;151:184–191. doi: 10.1016/j.agsy.2016.10.005. [CrossRef] [Google Scholar]

152. Bayala J., Sanou J., Teklehaimanot Z., Kalinganire A., Ouédraogo S.J. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 2014;6:28–34. doi: 10.1016/j.cosust.2013.10.004. [CrossRef] [Google Scholar]

153. Mbow C., Van Noordwijk M., Luedeling E., Neufeldt H., Minang P.A., Kowero G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014;6:61–67. doi: 10.1016/j.cosust.2013.10.014. [CrossRef] [Google Scholar]

154. Ofori D.A., Gyau A., Dawson I.K., Asaah E., Tchoundjeu Z., Jamnadass R. Developing more productive African agroforestry systems and improving food and nutritional security through tree domestication. Curr. Opin. Environ. Sustain. 2014;6:123–127. doi: 10.1016/j.cosust.2013.11.016. [CrossRef] [Google Scholar]

155. Lwasa S., Mugagga F., Wahab B., Simon D., Connors J., Griffit C. Urban and peri-urban agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation. Urban Clim. 2014;7:92–106. doi: 10.1016/j.uclim.2013.10.007. [CrossRef] [Google Scholar]

156. Alberti M., Marzluff J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004;7:241–265. doi: 10.1023/B:UECO.0000044038.90173.c6. [CrossRef] [Google Scholar]

157. McDonnell M.J., Pickett S.T.A., Groffman P., Bohlen P., Pouyat R.V., Zipperer W.C., Parmelee R.W., Carreiro M.M., Medley K. Urban Ecology. Springer; Boston, MA, USA: 2008. Ecosystem processes along an urban-to-rural gradient; pp. 299–313. [Google Scholar]

158. Pandey S.S., Cockfield G., Maraseni T.N. Assessing the roles of community forestry in climate change mitigation and adaptation: A case study from Nepal. For. Ecol. Manag. 2016;360:400–407. doi: 10.1016/j.foreco.2015.09.040. [CrossRef] [Google Scholar]

160. Balbus J., Berry P., Brettle M., Jagnarine-Azan S., Soares A., Ugarte C., Varangu L., Prats E.V. Enhancing the sustainability and climate resiliency of health care facilities: A comparison of initiatives and toolkits. Rev. Panam. Salud Pública. 2016;40:174–180. [PubMed] [Google Scholar]

162. Hassan S., Nguyen M., Buchanan M., Grimshaw A., Adams O.P., Hassell T., Ragster L., Nunez-Smith M. Management of Chronic Noncommunicable Diseases After Natural Disasters in the Caribbean: A Scoping Review: A scoping review of literature published between 1974 and 2020 examining the burden and management of chronic noncommunicable diseases after natural. Health Aff. 2020;39:2136–2143. doi: 10.1377/hlthaff.2020.01119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Boyer C.J., Bowen K., Murray V., Hadley J., Hilly J.J., Hess J.J., Ebi K.L. Using Implementation Science For Health Adaptation: Opportunities For Pacific Island Countries. Health Aff. 2020;39:2160–2167. doi: 10.1377/hlthaff.2020.01101. [PubMed] [CrossRef] [Google Scholar]

165. Salas R.N., Jha A.K. Climate change threatens the achievement of effective universal healthcare. BMJ. 2019;366:l5302. doi: 10.1136/bmj.l5302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Salas R.N., Maibach E., Pencheon D., Watts N., Frumkin H. A pathway to net zero emissions for healthcare. BMJ. 2020;371:m3785. doi: 10.1136/bmj.m3785. [PubMed] [CrossRef] [Google Scholar]

167. World Health Organization (WHO) Maldives Green CLIMATE-Smart Hospitals: Hospital Vulnerability Analysis and Report. World Health Organization (WHO); Geneva, Switzerland: 2018. [Google Scholar]

168. The World Bank . Madagascar—Climate Change and Health Diagnostic: Risks and Opportunities for Climate-Smart Health and Nutrition Investment. The World Bank Group; Washington, DC, USA: 2018. [Google Scholar]

170. World Health Organization (WHO) Bangladesh Health-National Adaptation Plan (HNAP) World Health Organization (WHO); Geneva, Switzerland: 2018. [Google Scholar]

172. Shea B., Knowlton K., Shaman J. Assessment of climate-health curricula at international health professions schools. JAMA Netw. Open. 2020;3:e206609. doi: 10.1001/jamanetworkopen.2020.6609. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Sorensen C., Murray V., Lemery J., Balbus J. Climate change and women’s health: Impacts and policy directions. PLoS Med. 2018;15:e1002603. doi: 10.1371/journal.pmed.1002603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Lemery J., Balbus J., Sorensen C., Rublee C., Dresser C., Balsari S., Calvello Hynes E. Training Clinical and Public Health Leaders In Climate And Health: Commentary explores training clinical and public health leaders in climate and health. Health Aff. 2020;39:2189–2196. doi: 10.1377/hlthaff.2020.01186. [PubMed] [CrossRef] [Google Scholar]

175. Patz J.A. Solving the global climate crisis: The greatest health opportunity of our times? Public Health Rev. 2016;37:30. doi: 10.1186/s40985-016-0047-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Howard C., Huston P. Climate change and infectious diseases: The solutions: The health effects of climate change: Know the risks and become part of the solutions. Canada Commun. Dis. Rep. 2019;45:114. doi: 10.14745/ccdr.v45i05a01. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Kuo F.E., Sullivan W.C. Aggression and violence in the inner city effects of environment via mental fatigue. Environ. Behav. 2001;33:543–571. doi: 10.1177/00139160121973124. [CrossRef] [Google Scholar]

178. Kuo F.E., Sullivan W.C. Environment and crime in the inner city does vegetation reduce crime? Environ. Behav. 2001;33:343–367. doi: 10.1177/00139160121973025. [CrossRef] [Google Scholar]

181. Jiang L., O’Neill B.C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017;42:193–199. doi: 10.1016/j.gloenvcha.2015.03.008. [CrossRef] [Google Scholar]

182. Chen W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities. 2015;44:112–120. doi: 10.1016/j.cities.2015.01.005. [CrossRef] [Google Scholar]

183. Nowak D.J., Greenfield E.J., Hoehn R.E., Lapoint E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013;178:229–236. doi: 10.1016/j.envpol.2013.03.019. [PubMed] [CrossRef] [Google Scholar]

184. Pauleit S., Ambrose-Oji B., Andersson E., Anton B., Buijs A., Haase D., Elands B., Hansen R., Kowarik I., Kronenberg J. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 2019;40:4–16. doi: 10.1016/j.ufug.2018.10.006. [CrossRef] [Google Scholar]

185. Younger M., Morrow-Almeida H.R., Vindigni S.M., Dannenberg A.L. The built environment, climate change, and health: Opportunities for co-benefits. Am. J. Prev. Med. 2008;35:517–526. doi: 10.1016/j.amepre.2008.08.017. [PubMed] [CrossRef] [Google Scholar]

186. Shanahan D.F., Bush R., Gaston K.J., Lin B.B., Dean J., Barber E., Fuller R.A. Health Benefits from Nature Experiences Depend on Dose. Sci. Rep. 2016;6:1–10. doi: 10.1038/srep28551. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Chun B., Guldmann J.-M. Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. Comput. Environ. Urban Syst. 2018;71:165–176. doi: 10.1016/j.compenvurbsys.2018.05.006. [CrossRef] [Google Scholar]

189. World Health Organization Health in the Green Economy: Health Co-Benefits of Climate Change Mitigation—Transport Sector. World Health Organization; Geneva, Switzerland: 2012. [Google Scholar]

190. Beyer K.M.M., Kaltenbach A., Szabo A., Bogar S., Nieto F.J., Malecki K.M. Exposure to neighborhood green space and mental health: Evidence from the survey of the health of Wisconsin. Int. J. Environ. Res. Public Health. 2014;11:3453–3472. doi: 10.3390/ijerph210303453. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Mantler A., Logan A.C. Natural environments and mental health. Adv. Integr. Med. 2015;2:5–12. doi: 10.1016/j.aimed.2015.03.002. [CrossRef] [Google Scholar]

192. Thomas F. The role of natural environments within women’s everyday health and wellbeing in Copenhagen, Denmark. Heal. Place. 2015;35:187–195. doi: 10.1016/j.healthplace.2014.11.005. [PubMed] [CrossRef] [Google Scholar]

193. McCormick R. Does Access to Green Space Impact the Mental Well-being of Children: A Systematic Review. J. Pediatr. Nurs. 2017;37:3–7. doi: 10.1016/j.pedn.2017.08.027. [PubMed] [CrossRef] [Google Scholar]

194. White M.P., Alcock I., Wheeler B.W., Depledge M.H. Would you be happier living in a greener urban area? A fixed-effects analysis of panel data. Psychol. Sci. 2013;24:920–928. doi: 10.1177/0956797612464659. [PubMed] [CrossRef] [Google Scholar]

195. Cheng J.J., Berry P. Health co-benefits and risks of public health adaptation strategies to climate change: A review of current literature. Int. J. Public Health. 2013;58:305–311. doi: 10.1007/s00038-012-0422-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Bikomeye J., Balza J., Beyer K. The Impact of Schoolyard Greening on Children’s Physical Activity and Socioemotional Health: A Systematic Review of Experimental Studies. Int. J. Environ. Res. Public Health. 2021;18:535. doi: 10.3390/ijerph28020535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Kardan O., Gozdyra P., Misic B., Moola F., Palmer L.J., Paus T., Berman M.G. Neighborhood greenspace and health in a large urban center. Sci. Rep. 2015;5:1_13. doi: 10.1038/srep11610. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Loukaitou-Sideris A., Levy-Storms L., Chen L., Brozen M. Parks for an aging population: Needs and preferences of low-income seniors in Los Angeles. J. Am. Plan. Assoc. 2016;82:236–251. doi: 10.1080/01944363.2016.1163238. [CrossRef] [Google Scholar]

199. Yang B.-Y., Markevych I., Bloom M.S., Heinrich J., Guo Y., Morawska L., Dharmage S.C., Knibbs L.D., Jalaludin B., Jalava P., et al. Community greenness, blood pressure, and hypertension in urban dwellers: The 33 Communities Chinese Health Study. Environ. Int. 2019;126:727–734. doi: 10.1016/j.envint.2019.02.068. [PubMed] [CrossRef] [Google Scholar]

200. Beyer K.M.M., Szabo A., Hoormann K., Stolley M. Time spent outdoors, activity levels, and chronic disease among American adults. J. Behav. Med. 2018;41:494–503. doi: 10.1007/s10865-018-9911-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Nieuwenhuijsen M.J. Influence of urban and transport planning and the city environment on cardiovascular disease /692/4019 /692/499 review-article. Nat. Rev. Cardiol. 2018;15:432–438. doi: 10.1038/s41569-018-0003-2. [PubMed] [CrossRef] [Google Scholar]

202. Yeager R., Riggs D.W., DeJarnett N., Tollerud D.J., Wilson J., Conklin D.J., O’Toole T.E., McCracken J., Lorkiewicz P., Xie Z., et al. Association between residential greenness and cardiovascular disease risk. J. Am. Heart Assoc. 2018;7 doi: 10.1161/JAHA.118.009117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Yeager R.A., Smith T.R., Bhatnagar A. Green environments and cardiovascular health. Trends Cardiovasc. Med. 2020;30:241–246. doi: 10.1016/j.tcm.2019.06.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Mitchell R., Popham F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet. 2008;372:1655–1660. doi: 10.1016/S0140-6736(08)61689-X. [PubMed] [CrossRef] [Google Scholar]

205. Roe J.J., Thompson C.W., Aspinall P.A., Brewer M.J., Duff E.I., Miller D., Mitchell R., Clow A. Green space and stress: Evidence from cortisol measures in deprived urban communities. Int. J. Environ. Res. Public Health. 2013;10:4086–4103. doi: 10.3390/ijerph20094086. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Thompson C.W., Roe J., Aspinall P., Mitchell R., Clow A., Miller D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012;105:221–229. doi: 10.1016/j.landurbplan.2011.12.015. [CrossRef] [Google Scholar]

207. Bogar S., Beyer K. Green Space, Violence, and Crime: A Systematic Review. Trauma. Violence Abuse. 2015;17 doi: 10.1177/1524838015576412. [PubMed] [CrossRef] [Google Scholar]

208. Weed M., Foad A. Rapid Scoping Review of Evidence of Outdoor Transmission of COVID-19. medRxiv. 2020 doi: 10.1101/2020.09.04.20188417. [CrossRef] [Google Scholar]

209. Shoari N., Ezzati M., Baumgartner J., Malacarne D., Fecht D. Accessibility and allocation of public parks and gardens in England and Wales: A COVID-19 social distancing perspective. PLoS ONE. 2020;15:e0241102. doi: 10.1371/journal.pone.0241102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Courtemanche C., Garuccio J., Le A., Pinkston J., Yelowitz A. Strong Social Distancing Measures in the United States Reduced The COVID-19 Growth Rate. Health Aff. 2020;39:1237–1246. doi: 10.1377/hlthaff.2020.00608. [PubMed] [CrossRef] [Google Scholar]

212. Leclerc Q.J., Fuller N.M., Knight L.E., Funk S., Knight G.M. What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res. 2020;5:83. doi: 10.12688/wellcomeopenres.15889.2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Venter Z.S., Barton D.N., Gundersen V., Figari H. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020;15:104075. doi: 10.1088/1748-9326/abb396. [CrossRef] [Google Scholar]

214. Brink L.A., Nigg C.R., Lampe S.M.R., Kingston B.A., Mootz A.L., Van Vliet W. Influence of schoolyard renovations on children’s physical activity: The learning landscapes program. Am. J. Public Health. 2010;100:1672–1678. doi: 10.2105/AJPH.2009.178939. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Hamer M., Aggio D., Knock G., Kipps C., Shankar A., Smith L. Effect of major school playground reconstruction on physical activity and sedentary behaviour: Camden active spaces. BMC Public Health. 2017 doi: 10.1186/s12889-017-4483-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Wallner P., Kundi M., Arnberger A., Eder R., Allex B., Weitensfelder L., Hutter H.P. Reloading pupils’ batteries: Impact of green spaces on cognition and wellbeing. Int. J. Environ. Res. Public Health. 2018;15:1205. doi: 10.3390/ijerph25061205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Kelz C., Evans G.W., Röderer K. The Restorative Effects of Redesigning the Schoolyard: A Multi-Methodological, Quasi-Experimental Study in Rural Austrian Middle Schools. Environ. Behav. 2015;47:119–139. doi: 10.1177/0013916513510528. [CrossRef] [Google Scholar]

218. van Dijk-Wesselius J.E., Maas J., Hovinga D., van Vugt M., van den Berg A.E. The impact of greening schoolyards on the appreciation, and physical, cognitive and social-emotional well-being of schoolchildren: A prospective intervention study. Landsc. Urban Plan. 2018;180:15–26. doi: 10.1016/j.landurbplan.2018.08.003. [CrossRef] [Google Scholar]

219. Raney M.A., Hendry C.F., Yee S.A. Physical Activity and Social Behaviors of Urban Children in Green Playgrounds. Am. J. Prev. Med. 2019;56:522–529. doi: 10.1016/j.amepre.2018.11.004. [PubMed] [CrossRef] [Google Scholar]

220. Sallis J.F., Floyd M.F., Rodríguez D.A., Saelens B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation. 2012;125:729–737. doi: 10.1161/CIRCULATIONAHA.110.969022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Goran M.I., Ball G.D.C., Cruz M.L. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J. Clin. Endocrinol. Metab. 2003;88:1417–1427. doi: 10.1210/jc.2002-021442. [PubMed] [CrossRef] [Google Scholar]

222. Guillaume M., Lapidus L., Björntorp P., Lambert A. Physical activity, obesity, and cardiovascular risk factors in children. The Belgian Luxembourg Child Study II. Obes. Res. 1997;5:549–556. doi: 10.1002/j.1550-8528.1997.tb00576.x. [PubMed] [CrossRef] [Google Scholar]

223. Goran M.I., Reynolds K.D., Lindquist C.H. Role of physical activity in the prevention of obesity in children. Int. J. Obes. 1999;23:S18–S33. doi: 10.1038/sj.ijo.0800880. [PubMed] [CrossRef] [Google Scholar]

224. Hills A.P., Andersen L.B., Byrne N.M. Physical activity and obesity in children. Br. J. Sports Med. 2011;45:866–870. doi: 10.1136/bjsports-2011-090199. [PubMed] [CrossRef] [Google Scholar]

226. World Health Organization Health in the Green Economy: Health Co-Benefits of Climate Change Mitigation-Housing Sector. World Health Organization; Geneva, Switzerland: 2011. [Google Scholar]

227. Lak A., Asl S.S., Maher A. Resilient urban form to pandemics: Lessons from COVID-19. Med. J. Islam. Repub. Iran. 2020;34:71. [PMC free article] [PubMed] [Google Scholar]

228. Rosenzweig C., Tubiello F.N. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitig. Adapt. Strateg. Glob. Chang. 2007;12:855–873. doi: 10.1007/s11027-007-9103-8. [CrossRef] [Google Scholar]

229. Williams A., Kitchen P. Sense of place and health in Hamilton, Ontario: A case study. Soc. Indic. Res. 2012;108:257–276. doi: 10.1007/s11205-012-0065-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Deligios P.A., Chergia A.P., Sanna G., Solinas S., Todde G., Narvarte L., Ledda L. Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke. Sci. Total Environ. 2019;649:461–472. doi: 10.1016/j.scitotenv.2018.08.349. [PubMed] [CrossRef] [Google Scholar]

231. Moya P., Hong L., Dawe D., Chongde C. The impact of on-farm water saving irrigation techniques on rice productivity and profitability in Zhanghe Irrigation System, Hubei, China. Paddy Water Environ. 2004;2:207–215. doi: 10.1007/s10333-004-0063-2. [CrossRef] [Google Scholar]

232. Freeman M.C., Garn J.V., Sclar G.D., Boisson S., Medlicott K., Alexander K.T., Penakalapati G., Anderson D., Mahtani A.G., Grimes J.E.T. The impact of sanitation on infectious disease and nutritional status: A systematic review and meta-analysis. Int. J. Hyg. Environ. Health. 2017;220:928–949. doi: 10.1016/j.ijheh.2017.05.007. [PubMed] [CrossRef] [Google Scholar]

233. Eckelman M.J., Sherman J. Environmental impacts of the US health care system and effects on public health. PLoS ONE. 2016;11:e0157014. doi: 10.1371/journal.pone.0157014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. US Environmental Protection Agency . The Benefits and Costs of the Clean Air Act, 1970 to 1990. U.S. Environmental Protection Agency; Washington, DC, USA: 1997. [Google Scholar]

235. Friel S., Bowen K., Campbell-Lendrum D., Frumkin H., McMichael A.J., Rasanathan K. Climate change, noncommunicable diseases, and development: The relationships and common policy opportunities. Annu. Rev. Public Health. 2011;32:133–147. doi: 10.1146/annurev-publhealth-071910-140612. [PubMed] [CrossRef] [Google Scholar]

236. Hess J., Boodram L.-L.G., Paz S., Ibarra A.M.S., Wasserheit J.N., Lowe R. Strengthening the global response to climate change and infectious disease threats. BMJ. 2020;371:m3081. doi: 10.1136/bmj.m3081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Khomenko S., Cirach M., Pereira-Barboza E., Mueller N., Barrera-Gómez J., Rojas-Rueda D., de Hoogh K., Hoek G., Nieuwenhuijsen M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Heal. 2021 doi: 10.1016/S2542-5196(20)30272-2. [PubMed] [CrossRef] [Google Scholar]

238. Chang K.M., Hess J.J., John M., Dean A., Green D., Partanen A., Estella S., Zhang Y., Smith S.J., Bowden J.H., et al. Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050. Environ. Res. Lett. 2017;12:114033. doi: 10.1088/1748-9326/aa8f76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

239. Cifuentes L., Borja-Aburto V.H., Gouveia N., Thurston G., Davis D.L. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, São Paulo, México City, and New York City. Environ. Health Perspect. 2001;109:419–425. [PMC free article] [PubMed] [Google Scholar]

240. Patz J.A., Lois A.N., Clifford S., Brossard D., Maibach E. Medical Alert! Climate Change is Harming our Health in Wisconsin. University of Wisconsin-Madison; Madison, WI, USA: 2020. [Google Scholar]

241. Kakkad K., Barzaga M.L., Wallenstein S., Azhar G.S., Sheffield P.E. Neonates in Ahmedabad, India, during the 2010 heat wave: A climate change adaptation study. J. Environ. Public Health. 2014;2014 doi: 10.1155/2014/946875. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Sorensen C.J., Salas R.N., Rublee C., Hill K., Bartlett E.S., Charlton P., Dyamond C., Fockele C., Harper R., Barot S. Clinical implications of climate change on US emergency medicine: Challenges and opportunities. Ann. Emerg. Med. 2020;76:168–178. doi: 10.1016/j.annemergmed.2020.03.010. [PubMed] [CrossRef] [Google Scholar]

245. Seltenrich N. Safe from the Storm: Creating Climate-Resilient Health Care Facilities. Environ. Health Perspect. 2018;126:102001. doi: 10.1289/EHP3810. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Cocanour C.S., Allen S.J., Mazabob J., Sparks J.W., Fischer C.P., Romans J., Lally K.P. Lessons Learned from the Evacuation of an Urban Teaching Hospital. Arch. Surg. 2002;137:1141–1145. doi: 10.1001/archsurg.137.10.1141. [PubMed] [CrossRef] [Google Scholar]

248. Hess J.J., Ranadive N., Boyer C., Aleksandrowicz L., Anenberg S.C., Aunan K., Belesova K., Bell M.L., Bickersteth S., Bowen K. Guidelines for modeling and reporting health effects of climate change mitigation actions. Environ. Health Perspect. 2020;128:115001. doi: 10.1289/EHP6745. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

249. Bell M.L., Davis D.L., Cifuentes L.A., Krupnick A.J., Morgenstern R.D., Thurston G.D. Ancillary human health benefits of improved air quality resulting from climate change mitigation. Environ. Heal. 2008;7:41. doi: 10.1186/1476-069X-7-41. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

250. O’Neill B.C., Kriegler E., Riahi K., Ebi K.L., Hallegatte S., Carter T.R., Mathur R., van Vuuren D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014;122:387–400. doi: 10.1007/s10584-013-0905-2. [CrossRef] [Google Scholar]

251. Sellers S., Ebi K.L. Climate change and health under the shared socioeconomic pathway framework. Int. J. Environ. Res. Public Health. 2018;15:3. doi: 10.3390/ijerph25010003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

252. Fox M., Zuidema C., Bauman B., Burke T., Sheehan M. Integrating public health into climate change policy and planning: State of practice update. Int. J. Environ. Res. Public Health. 2019;16:3232. doi: 10.3390/ijerph26183232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

253. Hess J.J., Mcdowell J.Z., Luber G. Integrating Climate Change Adaptation into Public Health Practice: Using Adaptive Management to Increase Adaptive Capacity and Build Resilience. Environ. Health Perspect. 2012;120:171–179. doi: 10.1289/ehp.1103515. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

What causes positive externalities?

A positive externality occurs when a benefit spills over. So, externalities occur when some of the costs or benefits of a transaction fall on someone other than the producer or the consumer. Imagine there's a factory in your town that produces widgets, a good that benefits consumers all over the world.

What are the examples of positive externality?

A positive externality is a benefit of producing or consuming a product. For example, education is a positive externality of school because people learn and develop skills for careers and their lives. In comparison, negative externalities are a cost of production or consumption.

Which of the following is a positive externality?

Research and development (R&D) conducted by a company can be a positive externality. R&D increases the private profits of a company but also has the added benefit of increasing the general level of knowledge within a society. Similarly, the emphasis on education is also a positive externality.

What are the 4 types of externalities?

In economics, there are four different types of externalities: positive consumption and positive production, and negative consumption and negative production externalities. As implied by their names, positive externalities generally have a positive effect, while negative ones have the opposite impact.