Wer ist an dem klimawandel schuld

  • Aeschbach-Hertig W (2007) Rebuttal of “On global forces of nature driving the Earth’s climate. Are humans involved?” by L. F. Khilyuk & G. V. Chilingar. Environ Geol 52:1007–1009. https://doi.org/10.1007/s00254-006-0519-3

  • Agee EM, Kiefer K, Cornett E (2012) Relationship of lower-troposphere cloud cover & cosmic rays: An updated perspective. J. Climate 25:1057–1060. https://doi.org/10.1175/JCLI-D-11-00169.1

  • Allmendinger T (2018) The real cause of global warming & its consequences on climate policy. SciFed Journal of Global Warming 2:1–11

    Google Scholar 

  • Andrews DE (2020) Correcting an error in some interpretations of atmospheric 14C data. EARTH 9:126. https://doi.org/10.11648/j.earth.20200904.12

  • Ångström K (1900) Ueber die Bedeutung des Wasserdampfes und der Kohlensäure bei der Absorption der Erdatmosphäre. Annu Phys 308:720–732. https://doi.org/10.1002/andp.19003081208

    ADS  CrossRef  Google Scholar 

  • Anonymus (2005) On global warming/climate change: Global temperatures & atmospheric carbon dioxide. Pete’s Place Blogspot. http://petesplace-peter.blogspot.com/2008/04/global-temperatures-and-atmospheric.html. Letzter Zugriff: 15.01.2021

  • Archer D (2005) Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. 110. https://doi.org/10.1029/2004JC002625

  • Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37:117–134. https://doi.org/10.1146/annurev.earth.031208.100206

  • Baliunas S, Jastrow R (1990) Evidence for long-term brightness changes of solar-type stars. Nature 348:520–523. https://doi.org/10.1038/348520a0

  • Ball WT, Unruh YC, Krivova NA, Solanki S, Wenzler T, Mortlock DJ, Jaffe AH (2012) Reconstruction of total solar irradiance 1974–2009. Astron Astrophys 541:A27. https://doi.org/10.1051/0004-6361/201118702

  • Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world‘s oceans. Science 309:284–287. https://doi.org/10.1126/science.1112418

  • Basu S, Lehman SJ, Miller JB, Andrews AE, Sweeney C, Gurney KR, Xu X, Southon J, Tans PP (2020) Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. PNAS 117:13300–13307. https://doi.org/10.1073/pnas.1919032117

  • Basu S, Miller JB, Lehman S (2016) Separation of biospheric & fossil fuel fluxes of CO2 by atmospheric inversion of CO2 & 14CO2 measurements: Observation system simulations. Atmos. Chem. Phys. 16:5665–5683. https://doi.org/10.5194/acp-16-5665-2016

  • Battams K, Howard RA, Dennison HA, Weigel RS, Lean JL (2020) The LASCO coronal brightness index. Sol Phys 295:1–29. https://doi.org/10.1007/s11207-020-1589-1

  • Bauska TK, Marcott SA, Brook EJ (2021) Abrupt changes in the global carbon cycle during the last glacial period. Nat. Geosci. 14:91–96. https://doi.org/10.1038/s41561-020-00680-2

  • Beck E-G (2007) 180 years of atmospheric CO2 gas analysis by chemical methods. Energy & Environment 18:259–282. https://doi.org/10.1177/0958305X0701800206

  • Beer J (2012) Solar forcing – a new PAGES Working Group. PAGES News 20:91. https://doi.org/10.1029/2009RG000282

  • Beerling DJ, Royer DL (2011) Convergent Cenozoic CO2 history. Nature Geosci 4:418–420. https://doi.org/10.1038/ngeo1186

  • Benestad RE (2017a) A mental picture of the greenhouse effect: A pedagogic explanation. Theor Appl Climatol 128:679–688. https://doi.org/10.1007/s00704-016-1732-y

  • Berner RA (1994) GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Amer J Sci 294:56–91. https://doi.org/10.2475/ajs.294.1.56

  • Berner RA (2006a) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 & CO2. Geochimica et Cosmochimica Acta 70:5653–5664. https://doi.org/10.1016/j.gca.2005.11.032

  • Berner RA, Kothavala Z (2001) GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301:182–204

    ADS  CAS  CrossRef  Google Scholar 

  • Berner U, Hollerbach A (2004) Klimawandel und CO2 aus geowissenschaftlicher Sicht, VDI-Tagung. http://crussow-lebenswert.de/dokumente/KLimawandel.pdf. Letzter Zugriff: 30.12.2020

  • Berner U, Streif H (eds) (2000) Klimafakten: Der Rückblick – ein Schlüssel für die Zukunft, 3. Aufl. Schweizerbart, Stuttgart

    Google Scholar 

  • Berry EX (2019) Human CO2 emissions have little effect on atmospheric CO2. IJAOS 3:13. https://doi.org/10.11648/j.ijaos.20190301.13

  • Blaauw HJ (2017) Global warming: Sun & water. Energy & Environm 28:468–483. https://doi.org/10.1177/0958305X17695276

  • Bojanowski A (2020b) Heute vor 22 Jahren wurde die wohl bekannteste Klima-Studie veröffentlicht, Twitter. https://twitter.com/Axel_Bojanowski/status/1252999151736029185. Letzter Zugriff: 07.03.2021

  • Bond G (1997) A Pervasive Millennial-Scale Cycle in North Atlantic Holocene & Glacial Climates. Science 278:1257–1266. https://doi.org/10.1126/science.278.5341.1257

  • Box JE, Yang L, Bromwich DH, Bai L-S (2009) Greenland ice sheet surface air temperature variability: 1840–2007. J Climate 22:4029–4049. https://doi.org/10.1175/2009JCLI2816.1

  • Brandenberger A (o. J.) Kohlenstoffdioxid CO2, Internet- Vademecum. https://vademecum.brandenberger.eu/klima/wissen/co2.php. Letzter Zugriff: 05.03.2021

  • Carbon Dating Service, AMS Miami (2015) Bomb carbon effect, radiocarbon testing. Beta Analytic. https://www.radiocarbon.com/carbon-dating-bomb-carbon.htm. Letzter Zugriff: 11.03.2021

  • Cardwell DSL (1971) From Watt to Clausius: The rise of thermodynamics in the early industrial age. Heinemann, London

    Google Scholar 

  • Caryl E (2014) Was geschah im Jüngeren Dryas? EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/2014/11/20/was-geschah-im-juengeren-dryas/. Letzter Zugriff: 14.03.2021

  • Cawley GC (2011) On the atmospheric residence time of anthropogenically sourced carbon dioxide. Energy Fuels 25:5503–5513. https://doi.org/10.1021/ef200914u

  • Charney JG, Ad Hoc Study Group on Carbon Dioxide and Climate (1979) Carbon dioxide & climate: a scientific assessment. National Academy of Sciences, Washington, DC

    CrossRef  Google Scholar 

  • Chen C, Harries J, Brindley H, Ringer M (2007) Spectral signatures of climate change in the Earth’s infrared spectrum between 1970 & 2006. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.3867&rep=rep1&type=pdf. Letzter Zugriff: 13.03.2021

  • Chilingar GV, Khilyuk LF, Sorokhtin OG (2008) Cooling of atmosphere due to CO2 emission. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 30:1–9. https://doi.org/10.1080/15567030701568727

  • Choudhury D, Timmermann A, Schloesser F, Heinemann M, Pollard D (2020) Simulating Marine Isotope Stage 7 with a coupled climate-ice sheet model. Clim Past 16:2183–2201. https://doi.org/10.5194/cp-16-2183-2020

  • Clark P (2020) Wood for trees: Interactive graphs. https://woodfortrees.org/plot/. Letzter Zugriff: 05.08.2020

  • Cowie J (2011) Review of The Delinquent Teenager by Donna Laframboise. http://www.concatenation.org/nfrev/laframboise_delinquent.html. Letzter Zugriff: 04.03.2021

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220. https://doi.org/10.1038/364218a0

  • Davis WJ (2017) The relationship between atmospheric carbon dioxide concentration & global temperature for the last 425 million years. Climate 5:76. https://doi.org/10.3390/cli5040076

  • Davis WJ, Taylor PJ (2018) The Antarctic Centennial Oscillation: a natural paleoclimate cycle in the southern hemisphere that influences global temperature. Climate 6:3. https://doi.org/10.3390/cli6010003

  • Davis WJ, Taylor PJ, Davis WB (2019) The origin & propagation of the Antarctic Centennial Oscillation. Climate 7:112. https://doi.org/10.3390/cli7090112

  • Deutsches Zentrum für Luft- und Raumfahrt (2012) co2_anim_deu_600.gif, DLR. https://www.dlr.de/dlr/Portaldata/1/Resources/bilder/portal/bonn/co2_anim_deu_600.gif. Letzter Zugriff: 05.03.2021

  • Dewitte S, Clerbaux N (2017) Measurement of the Earth radiation budget at the top of the atmosphere – A review. Remote Sensing 9:1143. https://doi.org/10.3390/rs9111143

  • Doney SC, Busch DS, Cooley SR, Kroeker KJ (2020) The Impacts of Ocean Acidification on Marine Ecosystems & Reliant Human Communities. Annu Rev Environ Resour 45:83–112. https://doi.org/10.1146/annurev-environ-012320-083019

  • Dunne EM, Gordon H, Kürten A, Almeida J, Duplissy J, Williamson C, Ortega IK, Pringle KJ, Adamov A, Baltensperger U, Barmet P, Benduhn F, Bianchi F, Breitenlechner M, Clarke A, Curtius J, Dommen J, Donahue NM, Ehrhart S, Flagan RC, Franchin A, Guida R, Hakala J, Hansel A, Heinritzi M, Jokinen T, Kangasluoma J, Kirkby J, Kulmala M, Kupc A, Lawler MJ, Lehtipalo K, Makhmutov V, Mann G, Mathot S, Merikanto J, Miettinen P, Nenes A, Onnela A, Rap A, Reddington CLS, Riccobono F, Richards NAD, Rissanen MP, Rondo L, Sarnela N, Schobesberger S, Sengupta K, Simon M, Sipilä M, Smith JN, Stozkhov Y, Tomé A, Tröstl J, Wagner PE, Wimmer D, Winkler PM, Worsnop DR, Carslaw KS (2016) Global atmospheric particle formation from CERN CLOUD measurements. Science 354:1119–1124. https://doi.org/10.1126/science.aaf2649

  • Easterbrook DJ (2010) 2010 – where does it fit in the warmest year list? Watts Up With That? https://wattsupwiththat.com/2010/12/28/2010-where-does-it-fit-in-the-warmest-year-list/. Letzter Zugriff: 07.04.2021

  • Ermecke K (2014) Stellungnahme zum Thema „Klimaschutz“: für die Mitglieder des Ausschusses für Umwelt, Energie und Klimaschutz im Niedersächsischen Landtag. KE Research – die Andersdenker. https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ke-2Dresearch.de_downloads_Stellungnahme-2DKlima-2DNiedersachsen.pdf&d=DwIF-g&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zRj-2RyFL_eKGy26qvADy0NekDShvfOiIJazKG74Fg&m=7RR7ECIOKddTxrj_NoWcHoOolxbqUYgv1n1hWxgxxy4&s=60LDrCT9Pp19bjyRI92O9aiRb1uh7-_0PBTezdydccE&e=. Letzter Zugriff: 13.03.2021

  • Ermecke K (2018) Stellungnahme zum geplanten „Thüringer Klimagesetz“ und kritische Hinterfragung seiner Grundlagen. Thüringer Landtag. https://urldefense.proofpoint.com/v2/url?u=https-3A__forum.thueringer-2Dlandtag.de_sites_default_files_downloads_Fortschritt-2520in-2520Freiheit-2520e.-2520V.pdf&d=DwIF-g&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zRj-2R-yFL_eKGy26qvADy0NekDShvfOiIJazKG74Fg&m=7RR7ECIOKddTxrj_NoWcHoOolxbqUYgv1n1hWxgxxy4&s=gzSoiQVD56TE71s0ZPwwK6npBenssR15cWt0tLb8Vbg&e=. Letzter Zugriff: 21.09.2021

  • ESRL Global Monitoring Division (2021) Global Monitoring Laboratory. Carbon Cycle Greenhouse Gases, NOAA Global Monitoring Laboratory – Earth System Research Laboratories. https://www.esrl.noaa.gov/gmd/outreach/isotopes/stable.html. Letzter Zugriff: 13.03.2021

  • Essenhigh RH (2009) Potential dependence of global warming on the residence time (RT) in the atmosphere of anthropogenically sourced carbon dioxide. Energy Fuels 23:2773–2784. https://doi.org/10.1021/ef800581r

  • Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34. https://doi.org/10.1029/2006GL028083

  • Farnsworth A, Lunt DJ, O‘Brien CL, Foster GL, Inglis GN, Markwick P, Pancost RD, Robinson SA (2019) Climate sensitivity on geological timescales controlled by nonlinear feedbacks & ocean circulation. Geophys Res Lett 46:9880–9889. https://doi.org/10.1029/2019GL083574

  • Feldman DR, Collins WD, Gero PJ, Torn MS, Mlawer EJ, Shippert TR (2015) Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 519:339–343. https://doi.org/10.1038/nature14240

  • Fenton LK, Geissler PE, Haberle RM (2007) Global warming & climate forcing by recent albedo changes on Mars. Nature 446:646–649. https://doi.org/10.1038/nature05718

  • Fleming RJ (2020) The rise & fall of the carbon dioxide theory of climate change. Springer International Publishing, Cham

    CrossRef  Google Scholar 

  • Florides GA, Christodoulides P (2009) Global warming & carbon dioxide through sciences. Environ Int 35:390–401. https://doi.org/10.1016/j.envint.2008.07.007

  • Flückiger J, Blunier T, Stauffer B, Chappellaz J, Spahni R, Kawamura K, Schwander J, Stocker TF, Dahl-Jensen D (2004) N2O & CH4 variations during the last glacial epoch: Insight into global processes. Global Biogeochem. Cycles 18. https://doi.org/10.1029/2003GB002122

  • Frey C (2019) Menschliche CO2-Emissionen haben kaum Auswirkungen auf den atmosphärischen CO2-Gehalt. EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/2019/07/12/menschliche-co2-emissionen-haben-kaum-auswirkungen-auf-den-atmosphaerischen-co2-gehalt/. Letzter Zugriff: 11.03.2021

  • Frey C (2020) Gibt es einen Treibhaus­effekt? EIKE – Europäisches Institut für Klima & Energie. https://eike-klima-energie.eu/2020/11/17/gibt-es-einen-treibhauseffekt/. Letzter Zugriff: 21.08.2021

  • Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate & atmospheric CO2. PNAS 111:3280–3285. https://doi.org/10.1073/pnas.1222477110

  • Friis-Christensen E, Lassen K (1991) Length of the solar cycle: An indicator of solar activity closely associated with climate. Science 254:698–700. https://doi.org/10.1126/science.254.5032.698

  • Gastmann J (2020) Klima, CO2 und Sonne: Warum die CO2-Theorie unwahrscheinlich ist. https://www.economy4mankind.org/klima-co2-sonne. Letzter Zugriff: 15.01.2021

  • Gerlach T (2011) Volcanic versus anthropogenic carbon dioxide. Eos Trans AGU 92:201–202. https://doi.org/10.1029/2011EO240001

  • Gerlich G, Tscheuschner RD (2009) Falsification of the atmospheric CO2 greenhouse effects within the frame of Physics. Int J Mod Phys B 23:275–364. https://doi.org/10.1142/S021797920904984X

  • Gervais F (2016) Anthropogenic CO2 warming challenged by 60-year cycle. Earth-Sci Rev 155:129–135. https://doi.org/10.1016/j.earscirev.2016.02.005

  • Gettelman A, Hannay C, Bacmeister JT, Neale RB, Pendergrass AG, Danabasoglu G, Lamarque J-F, Fasullo JT, Bailey DA, Lawrence DM, Mills MJ (2019) High Climate Sensitivity in the Community Earth System Model version 2 (CESM2). Geophys Res Lett 46:8329–8337. https://doi.org/10.1029/2019GL083978

  • Gillis J (30.04.2012) Clouds’ effect on climate change is last bastion for dissenters. The New York Times. https://www.nytimes.com/2012/05/01/science/earth/clouds-effect-on-climate-change-is-last-bastion-for-dissenters.html. Letzter Zugriff: 29.04.2021

  • Gorbarenko EV (2016) Climate changes in atmospheric radiation parameters from the MSU meteorological observatory data. Russ Meteorol Hydrol 41:789–797. https://doi.org/10.3103/S1068373916110078

    CrossRef  Google Scholar 

  • Gordon H, Kirkby J, Baltensperger U, Bianchi F, Breitenlechner M, Curtius J, Dias A, Dommen J, Donahue NM, Dunne EM, Duplissy J, Ehrhart S, Flagan RC, Frege C, Fuchs C, Hansel A, Hoyle CR, Kulmala M, Kürten A, Lehtipalo K, Makhmutov V, Molteni U, Rissanen MP, Stozkhov Y, Tröstl J, Tsagkogeorgas G, Wagner R, Williamson C, Wimmer D, Winkler PM, Yan C, Carslaw KS (2017a) Causes & importance of new particle formation in the present-day & preindustrial atmospheres. J Geophys Res Atmos 122:8739–8760. https://doi.org/10.1002/2017JD026844

    ADS  CrossRef  Google Scholar 

  • Gordon IE, Rothman LS, Hill C, Kochanov RV, Tan Y, Bernath PF, Birk M, Boudon V, Campargue A, Chance KV, Drouin BJ, Flaud J-M, Gamache RR, Hodges JT, Jacquemart D, Perevalov VI, Perrin A, Shine KP, Smith M-A, Tennyson J, Toon GC, Tran H, Tyuterev VG, Barbe A, Császár AG, Devi VM, Furtenbacher T, Harrison JJ, Hartmann J-M, Jolly A, Johnson TJ, Karman T, Kleiner I, Kyuberis AA, Loos J, Lyulin OM, Massie ST, Mikhailenko SN, Moazzen-Ahmadi N, Müller H, Naumenko OV, Nikitin AV, Polyansky OL, Rey M, Rotger M, Sharpe SW, Sung K, Starikova E, Tashkun SA, Auwera JV, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak EJ (2017b) The HITRAN2016 molecular spectroscopic database. J Quant Spectroscopy & Radiative Transfer 203:3–69. https://doi.org/10.1016/j.jqsrt.2017.06.038

    ADS  CAS  CrossRef  Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48. https://doi.org/10.1029/2009RG000282

  • Gregory JM, Andrews T, Ceppi P, Mauritsen T, Webb MJ (2020) How accurately can the climate sensitivity to CO2 be estimated from historical climate change? Clim Dyn 54:129–157. https://doi.org/10.1007/s00382-019-04991-y

    CrossRef  Google Scholar 

  • Griggs JA, Harries JE (2007) Comparison of spectrally resolved outgoing longwave radiation over the tropical Pacific between 1970 & 2003 using IRIS, IMG, & AIRS. J Climate 20:3982–4001. https://doi.org/10.1175/JCLI4204.1

    ADS  CrossRef  Google Scholar 

  • Grosjean M, Guiot J, Yu Z (2018) Commentary: H. Harde: “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere”. Global & Planetary Change 164:65–66. https://doi.org/10.1016/j.gloplacha.2017.12.023

    ADS  CrossRef  Google Scholar 

  • Guinan EF, Ribas I (2002) The role of solar nuclear evolution & magnetic activity on earth’s atmosphere & climate. In: Montesinos B (Hrsg.) The evolving sun & its influence on planetary environments: Proceedings of a Workshop held at Instituto de Astrofisica de Andalucia, Granada, Spain, 18–20 June 2001. Astronom Soc of the Pacific, San Francisco, Calif.:85–106

    Google Scholar 

  • Haigh (1996) The Impact of solar variability on climate. Science 272:981–984. https://doi.org/10.1126/science.272.5264.981

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Haigh JD (2003) The effects of solar variability on the Earth‘s climate. Philos Trans Royal Soc London, Ser A 361:95–111. https://doi.org/10.1098/rsta.2002.1111

    ADS  CrossRef  Google Scholar 

  • Halpern JB, Colose CM, Ho-Stuart C, Shore JD, Smith AP, Zimmermann J (2010) Comment on „Falsification of the atmospheric CO2 greenhouse effects within the frame of Physics“. Int. J. Mod. Phys. B 24:1309–1332. https://doi.org/10.1142/S021797921005555X

    ADS  CAS  CrossRef  Google Scholar 

  • Hammer M (2011) Why greenhouse gas warming doesn’t break the second law of thermodynamics. JoNova. https://joannenova.com.au/2011/05/why-greenhouse-gas-warming-doesnt-break-the-second-law-of-thermodynamics/. Letzter Zugriff: 11.03.2021

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing & climate response. J Geophys Res 102:6831–6864. https://doi.org/10.1029/96JD03436

    ADS  CAS  CrossRef  Google Scholar 

  • Happer W (2011) The truth about greenhouse gases: The dubious science of the climate crusaders. First Things. https://www.firstthings.com/article/2011/06/the-truth-about-greenhouse-gases. Letzter Zugriff: 05.03.2021

  • Harde H (2017a) Radiation transfer calculations & assessment of global warming by CO2. Int J Atmos Sci 2017:1–30. https://doi.org/10.1155/2017/9251034

    CrossRef  Google Scholar 

  • Harde H (2017b) Scrutinizing the carbon cycle & CO2 residence time in the atmosphere. Global & Planetary Change 152:19–26. https://doi.org/10.1016/j.gloplacha.2017.02.009

    ADS  CrossRef  Google Scholar 

  • Harde H (2019) Wie schädlich ist CO2 wirklich für unser Klima? EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/2019/02/15/wie-schaedlich-ist-co2-wirklich-fuer-unser-klima/. Letzter Zugriff: 01.03.2021

  • Harries JE, Brindley HE, Sagoo PJ, Bantges RJ (2001) Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 & 1997. Nature 410:355–357. https://doi.org/10.1038/35066553

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Hartmann DL, Michelsen ML (2002) No evidence for Iris. Bull Amer Meteorol Soc 83:249–254. https://doi.org/10.1175/1520-0477(2002)083<0249:NEFI>2.3.CO;2

    ADS  CrossRef  Google Scholar 

  • Hausfather Z (2018) Explainer: What climate models tell us about future rainfall. Carbon Brief. https://www.carbonbrief.org/explainer-what-climate-models-tell-us-about-future-rainfall. Letzter Zugriff: 24.11.2020

  • Hawkeye (2007) View from above: is the earth really warming? (Part 2). Viewhigh.Blogspot. https://viewhigh.blogspot.com/2007/08/is-earth-really-warming-part-2.html. Letzter Zugriff: 09.03.2021

  • He S-P, Wang H-J, Gao Y-Q, Li F, LI H, Wang C (2018) Influence of solar wind energy flux on the interannual variability of ENSO in the subsequent year. Atmos & Ocean Sci Lett 11:165–172. https://doi.org/10.1080/16742834.2018.1436367

    CrossRef  Google Scholar 

  • Hertzberg M, Siddons A, Schreuder H (2016) Role of atmospheric carbon dioxide in climate change. Energy & Environm 27:785–797. https://doi.org/10.1177/0958305X16674637

    CAS  CrossRef  Google Scholar 

  • Hessen DO, Frauenlob G, Hippe K (2019) C – die vielen Leben des Kohlenstoffs. Kommode Verlag, Zürich

    Google Scholar 

  • Hi A, Anagnostou E, Boer AM de, Coxall HK, Donnadieu Y, Foster G, Inglis GN, Knorr G, Langebroek PM, Lear CH, Lohmann G, Poulsen CJ, Sepulchre P, Tierney JE, Valdes PJ, Volodin EM, Dunkley Jones T, Hollis CJ, Huber M, Otto-Bliesner BL (2021) DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features & comparison with proxy data. Clim Past 17:203–227. https://doi.org/10.5194/cp-17-203-2021

    CrossRef  Google Scholar 

  • Hill C (2020) HITRANonline, High-resolution transmission molecular absorption database. https://hitran.org/. Letzter Zugriff: 10.03.2021

  • Hmiel B, Petrenko VV, Dyonisius MN, Buizert C, Smith AM, Place PF, Harth C, Beaudette R, Hua Q, Yang B, Vimont I, Michel SE, Severinghaus JP, Etheridge D, Bromley T, Schmitt J, Faïn X, Weiss RF, Dlugokencky E (2020) Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature 578:409–412. https://doi.org/10.1038/s41586-020-1991-8

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Hoffmann G (2009) Sie ist gesättigt, sie ist es nicht, sie ist gesättigt, … Anmerkungen zum Strahlungstransport. ScienceBlogs Primaklima. https://scienceblogs.de/primaklima/2009/03/31/sie-ist-gesattigt-sie-ist-es-nicht-sie-ist-gesattigt-anmerkungen-zum-strahlungstransport/. Letzter Zugriff: 10.03.2021

  • Hoffmann G (2012) Die kalte Sonne von Vahrenholt/Lüning: Le Trend, c’est moi! ScienceBlogs Primaklima. https://scienceblogs.de/primaklima/2012/05/16/die-kalte-sonne-von-vahrenholtluning-le-trend-cest-moi/. Letzter Zugriff: 20.03.2021

  • Holmes RI (2018) Thermal enhancement on planetary bodies & the relevance of the molar mass version of the ideal gas law to the null hypothesis of climate change. EARTH 7:107–123. https://doi.org/10.11648/j.earth.20180703.13

  • IPCC (2001) TAR climate change 2001: The scientific basis. IPCC. https://www.ipcc.ch/report/ar3/wg1/. Letzter Zugriff: 23.11.2020

  • Jiménez-de-la-Cuesta D, Mauritsen T (2019) Emergent constraints on Earth’s transient & equilibrium response to doubled CO2 from post-1970s global warming. Nat. Geosci. 12:902–905. https://doi.org/10.1038/s41561-019-0463-y

    ADS  CAS  CrossRef  Google Scholar 

  • Jones D, Watkins A, Braganza K, Coughlan M (2007) “The Great Global Warming Swindle”: a critique. Bull Austral Meteorol & Oceanogr Soc 20:63–72

    Google Scholar 

  • Karman T, Koenis MAJ, Banerjee A, Parker DH, Gordon IE, van der Avoird A, van der Zande WJ, Groenenboom GC (2018) O2-O2 & O2-N2 collision-induced absorption mechanisms unravelled. Nat Chem 10:549–554. https://doi.org/10.1038/s41557-018-0015-x

    CAS  CrossRef  PubMed  Google Scholar 

  • Kaufman D, McKay N, Routson C, Erb M, Dätwyler C, Sommer PS, Heiri O, Davis B (2020) Holocene global mean surface temperature, a multi-method reconstruction approach. Sci Data 7:201. https://doi.org/10.1038/s41597-020-0530-7

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kaufmann RK, Juselius K (2013) Testing hypotheses about glacial cycles against the observational record. Paleoceanogr 28:175–184. https://doi.org/10.1002/palo.20021

    ADS  CrossRef  Google Scholar 

  • Kauppinen J, Malmi P (2019) No experimental evidence for the significant anthropogenic climate change. arXiv. http://arxiv.org/pdf/1907.00165v1. Letzter Zugriff: 03.03.2021

  • Kay JE, Hillman BR, Klein SA, Zhang Y, Medeiros B, Pincus R, Gettelman A, Eaton B, Boyle J, Marchand R, Ackerman TP (2012) Exposing global cloud biases in the community atmosphere model (CAM) using satellite observations & their corresponding instrument simulators. J Climate 25:5190–5207. https://doi.org/10.1175/JCLI-D-11-00469.1

    ADS  CrossRef  Google Scholar 

  • Keeling RE, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229. https://doi.org/10.1146/annurev.marine.010908.163855

    ADS  CrossRef  Google Scholar 

  • Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 & 13CO2 exchange with the terrestrial biosphere & oceans from 1978 to 2000: Observations & carbon cycle implications. In: Ehleringer JR (Hrsg.) A history of atmospheric CO2 & its effects on plants, animals, & ecosystems, vol 177. Springer, New York, NY:83–113

    Google Scholar 

  • Keeling RF (2007) Comment on „180 Years of atmospheric CO2 gas analysis by chemical methods“ by Ernst-Georg Beck, Energy & Environment, Vol. 18 (2), 259-282, 2007. Energy & Environm 18:637–639

    Google Scholar 

  • Khilyuk LF, Chilingar GV (2006) On global forces of nature driving the Earth’s climate. Are humans involved? Environ Geol 50:899–910. https://doi.org/10.1007/s00254-006-0261-x

    ADS  CrossRef  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earth‘s Annual Global Mean Energy Budget. Bull Amer Meteorol Soc 78:197–208. https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2

    ADS  CrossRef  Google Scholar 

  • Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagné S, Ickes L, Kürten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan RC, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy ER, Makhmutov V, Mathot S, Mikkilä J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petäjä T, Schnitzhofer R, Seinfeld JH, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Vanhanen J, Viisanen Y, Vrtala A, Wagner PE, Walther H, Weingartner E, Wex H, Winkler PM, Carslaw KS, Worsnop DR, Baltensperger U, Kulmala M (2011) Role of sulphuric acid, ammonia & galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433. https://doi.org/10.1038/nature10343

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Kleber A (1984) Zur jungtertiären Reliefentwicklung im Vorland der südlichen Frankenalb. Berliner Geographische Abhandlungen 36:65–68

    Google Scholar 

  • Kleber A (2019a) Hat sich mit dem Klimawandel die Temperatur auch auf dem Mond erhöht? Quora.com. https://de.quora.com/Hat-sich-mit-dem-Klimawandel-die-Temperatur-auch-auf-dem-Mond-erh%C3%B6ht/answer/Arno-Kleber. Letzter Zugriff: 29.03.2021

  • Kleber A (2019d) Wodurch wurde die Eiszeit ausgelöst? Quora.com – Klima der Vorzeit. https://de.quora.com/q/klimadervorzeit/Wodurch-wurde-die-Eiszeit-ausgel%C3%B6st. Letzter Zugriff: 22.01.2021

  • Kleber A (2020b) Comment on „how to talk with reactionaries about climate change“. Quora.com – Climate Change & Discussion. https://www.quora.com/q/climatechangediscussion/How-to-Talk-with-Reactionaries-About-Climate-Change/comment/2409264. Letzter Zugriff: 19.03.2021

  • Kleber A (2020c) Das bedeutendste Massenaussterben, seit es höheres Leben gibt – ein Präzedenzfall für unsere Zukunft? Quora.com – Klimawandel und -diskussion. https://de.quora.com/q/klimawandeldiskussion/Das-bedeutendste-Massenaussterben-seit-es-höheres-Leben-gibt-ein-Präzedenzfall-für-unsere-Zukunft. Letzter Zugriff: 19.03.2020

  • Kleber A (2020g) If you believe that the timeline in the Bible suggests that creation is only 6000 years or so old, then how do you explain the existence of the fossil record that clearly establishes that the Earth is much older? Quora.com – Evolution & Creationism. https://www.quora.com/q/evolutionandcreationism/If-you-believe-that-the-timeline-in-the-Bible-suggests-that-creation-is-only-6000-years-or-so-old-then-how-do-you-expla. Letzter Zugriff: 15.03.2021

  • Kleber A (2020h) Let‘s find a new cause of global warming, main thing it is not humans (irony flag!). Quora.com – Fighting Deniers. https://www.quora.com/q/fightingdeniers/Lets-find-a-new-cause-of-global-warming-main-thing-it-is-not-humans-irony-flag. Letzter Zugriff: 22.03.2021

  • Kleber A (2020j) There is urgent need to find that CO2 is uncorrelated to climate. Quora.com – Fighting Deniers. https://www.quora.com/q/fightingdeniers/There-is-urgent-need-to-find-that-CO%E2%82%82-is-uncorrelated-to-climate. Letzter Zugriff: 22.01.2021

  • Kleber A (2021b) CO2 in der Erdgeschichte, Quora.com. https://de.quora.com/q/klimadervorzeit/CO2-in-der-Erdgeschichte. Letzter Zugriff: 29.12.2020

  • Kirstein W (2010) Wo bleibt der Klimawandel? YouTube. https://www.youtube.com/watch?v=xRszuxcyJjg. Letzter Zugriff: 12.03.2021

  • Kleber A (2021d) Wenn die Alpen zu Hannibals Zeiten schon einmal schnee- und eisfrei waren, warum wird dann jetzt so ein Wirbel darum gemacht? Gehört das alles nicht zum natürlichen Lauf der Dinge? Quora.com – Klimawandel und -diskussion. https://de.quora.com/q/klimawandeldiskussion/Wenn-die-Alpen-zu-Hannibals-Zeiten-schon-einmal-schnee-und-eisfrei-waren-warum-wird-dann-jetzt-so-ein-Wirbel-darum-gem. Letzter Zugriff: 12.03.2021

  • Kluft L, Dacie S, Buehler SA, Schmidt H, Stevens B (2019) Re-examining the first climate models: climate sensitivity of a modern radiative-convective equilibrium model. J Climate 32:8111–8125. https://doi.org/10.1175/JCLI-D-18-0774.1

    ADS  CrossRef  Google Scholar 

  • Knutti R, Rugenstein MAA, Hegerl GC (2017) Beyond equilibrium climate sensitivity. Nature Geosci 10:727–736. https://doi.org/10.1038/NGEO3017

    ADS  CAS  CrossRef  Google Scholar 

  • Kobashi T, Goto-Azuma K, Box JE, Gao C-C, Nakaegawa T (2013) Causes of Greenland temperature variability over the past 4000 yr: Implications for northern hemispheric temperature changes. Clim Past 9:2299–2317. https://doi.org/10.5194/cp-9-2299-2013

    CrossRef  Google Scholar 

  • Köhler P, Hauck J, Völker C, Wolf-Gladrow DA, Butzin M, Halpern JB, Rice K, Zeebe RE (2018) Comment on “Scrutinizing the carbon cycle & CO2 residence time in the atmosphere” by H. Harde. Global & Planetary Change 164:67–71. https://doi.org/10.1016/j.gloplacha.2017.09.015

    ADS  CrossRef  Google Scholar 

  • Koutsoyiannis D, Kundzewicz ZW (2020) Atmospheric temperature & CO2: Hen-or-egg causality? Sci 2:83. https://doi.org/10.3390/sci2040083

    CrossRef  Google Scholar 

  • Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467:335–346. https://doi.org/10.1051/0004-6361:20066725

    ADS  CrossRef  Google Scholar 

  • Krivova NA, Solanki SK, Wenzler T (2009) ACRIM-gap & total solar irradiance revisited: Is there a secular trend between 1986 & 1996? Geophys. Res. Lett. 36. https://doi.org/10.1029/2009GL040707

  • Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: No connection between galactic cosmic rays & new particle formation. Atmos. Chem. Phys. 10:1885–1898. https://doi.org/10.5194/acp-10-1885-2010

    ADS  CAS  CrossRef  Google Scholar 

  • Laut P, Gundermann J (1998) Does the correlation between solar cycle lengths & northern hemisphere land temperatures rule out any significant global warming from greenhouse gases? J Atmos & Solar-Terrestr Phys 60:1–3. https://doi.org/10.1016/S1364-6826(97)00115-6

    ADS  CrossRef  Google Scholar 

  • Lauvaux T, Gurney KR, Miles NL, Davis KJ, Richardson SJ, Deng A, Nathan BJ, Oda T, Wang JA, Hutyra L, Turnbull J (2020) Policy-relevant assessment of urban CO2 emissions. Environ Sci Technol 54:10237–10245. https://doi.org/10.1021/acs.est.0c00343

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S, O‘Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649. https://doi.org/10.5194/essd-8-605-2016

    ADS  CrossRef  Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys Res Lett 22:3195–3198. https://doi.org/10.1029/95GL03093

    ADS  CrossRef  Google Scholar 

  • Lean JL, Coddington O, Marchenko SV, Machol J, DeLand MT, Kopp G (2020) Solar irradiance variability: Modeling the measurements. Earth & Space Sci 7. https://doi.org/10.1029/2019EA000645

  • Lecavalier BS, Milne GA, Vinther BM, Fisher DA, Dyke AS, Simpson MJ (2013) Revised estimates of Greenland ice sheet thinning histories based on ice-core records. Quat Sci Rev 63:73–82. https://doi.org/10.1016/j.quascirev.2012.11.030

    ADS  CrossRef  Google Scholar 

  • Lehmann H, Müschen K, Richter S, Mäder C (2013) Und sie erwärmt sich doch: Was steckt hinter der Debatte um den Klimawandel? Umweltbundesamt. https://www.umweltbundesamt.de/publikationen/sie-erwaermt-sich-doch-was-steckt-hinter-debatte-um. Letzter Zugriff: 04.03.2021

  • Lehr J, Ciccone T (2020) A simplified global warming tutorial: Who are we kidding? Judy Collins was right. CFACT. https://www.cfact.org/2020/08/31/a-simplified-global-warming-tutorial-who-are-we-kidding-judy-collins-was-right/. Letzter Zugriff: 01.03.2021

  • Lewis N (2015) Pitfalls in climate sensitivity estimation. Max-Planck-Institut für Meteorologie. https://mpimet.mpg.de/fileadmin/atmosphaere/wcrp_grand_challenge_workshop/ringberg_2015/talks/lewis_24032015.pdf. Letzter Zugriff: 27.03.2021

  • Lightfoot HD, Mamer OA (2017) Back radiation versus CO2 as the cause of climate change. Energy & Environm 28:661–672. https://doi.org/10.1177/0958305X17722790

    CrossRef  Google Scholar 

  • Limburg M (2009b) Klimawandel durch Kohlendioxid? Wissenschaftsskandal oder Abzockerei? EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/2009/10/08/klimawandel-durch-kohlendioxid-wissenschaftsskandal-oder-abzockerei/. Letzter Zugriff: 01.03.2021

  • Lindzen RS (2011) A case against precipitous climate action. Energy & Environm 22:747–751

    CrossRef  Google Scholar 

  • Lindzen RS, Choi Y-S (2009) On the determination of climate feedbacks from ERBE data. Geophys Res Lett 36. https://doi.org/10.1029/2009GL039628

  • Lindzen RS, Choi Y-S (2011) On the observational determination of climate sensitivity & its implications. Asia-Pacific J Atmos Sci 47:377–390. https://doi.org/10.1007/s13143-011-0023-x

    ADS  CrossRef  Google Scholar 

  • Lindzen RS, Chou M-D, Hou AY (2001) Does the earth have an adaptive infrared iris? Bull Amer Meteorol Soc 82:417–432. https://doi.org/10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2

    ADS  CrossRef  Google Scholar 

  • Liu F, Lu J, Huang Y, Leung LR, Harrop BE, Luo Y (2020) Sensitivity of surface temperature to oceanic forcing via q-flux green’s function experiments: Part III: asymmetric response to warming & cooling. J Climate 33:1283–1297. https://doi.org/10.1175/JCLI-D-19-0131.1

    ADS  CAS  CrossRef  Google Scholar 

  • Lockwood M, Fröhlich C (2007) Recent oppositely directed trends in solar climate forcings & the global mean surface air temperature. Proc Royal Soc A 463:2447–2460. https://doi.org/10.1098/rspa.2007.1880

    ADS  CrossRef  Google Scholar 

  • Loehle C, Scafetta N (2011) Climate change attribution using empirical decomposition of climatic data. TOASCJ 5:74–86. https://doi.org/10.2174/1874282301105010074

    ADS  CrossRef  Google Scholar 

  • Lorius C, Jouzel J, Raynaud D, Hansen J, Le Treut H (1990) The ice-core record: climate sensitivity & future greenhouse warming. Nature 347:139–145. https://doi.org/10.1038/347139a0

    ADS  CAS  CrossRef  Google Scholar 

  • Loulergue L, Parrenin F, Blunier T, Barnola J-M, Spahni R, Schilt A, Raisbeck G, Chappellaz J (2007) New constraints on the gas age-ice age difference along the EPICA ice cores, 0-50 kyr. Clim Past 3:527–540. https://doi.org/10.5194/cp-3-527-2007

    CrossRef  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital & millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386. https://doi.org/10.1038/nature06950

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Lüdecke H-J, Hempelmann A, Weiss CO (2013) Multi-periodic climate dynamics: Spectral analysis of long-term instrumental & proxy temperature records. Clim Past 9:447–452. https://doi.org/10.5194/cp-9-447-2013

    CrossRef  Google Scholar 

  • Lüning S, Vahrenholt F (2016) The sun‘s role in climate. In: Easterbrook DJ (Hrsg.) Evidence-based climate science: Data opposing CO2 emissions as the primary source of global warming, 2. Aufl. Elsevier, Amsterdam:283–305

    CrossRef  Google Scholar 

  • Lunt DJ, Bragg F, Chan W-L, Hutchinson DK, Ladant J-B, Morozova P, Niezgodzki I, Steinig S, Zhang Z, Zhu J, Abe-Ouc Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, Salzen K von, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

    CAS  CrossRef  Google Scholar 

  • MacCracken M (2007) Analysis of the paper “environmental effects of increased atmospheric carbon dioxide” by Arthur B. Robinson et al. College of Information Sciences and Technology, Pennsylvania State University. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.1018&rep=rep1&type=pdf. Letzter Zugriff: 07.03.2021

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns & climate forcing over the past six centuries. Nature 392:779–787. https://doi.org/10.1038/33859

    ADS  CAS  CrossRef  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, & limitations. Geophys Res Lett 26:759–762. https://doi.org/10.1029/1999GL900070

    ADS  CrossRef  Google Scholar 

  • Mann ME, Steinman BA, Brouillette DJ, Miller SK (2021) Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 371:1014–1019. https://doi.org/10.1126/science.abc5810

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Mann ME, Steinman BA, Miller SK (2020) Absence of internal multidecadal & interdecadal oscillations in climate model simulations. Nat Commun 11:49. https://doi.org/10.1038/s41467-019-13823-w

    ADS  CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Marotzke J, Forster PM (2015) Forcing, feedback & internal variability in global temperature trends. Nature 517:565–570. https://doi.org/10.1038/nature14117

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Matthes K, Funke B, Andersson ME, Barnard L, Beer J, Charbonneau P, Clilverd MA, Dudok de Wit T, Haberreiter M, Hendry A, Jackman CH, Kretzschmar M, Kruschke T, Kunze M, Langematz U, Marsh DR, Maycock AC, Misios S, Rodger CJ, Scaife AA, Seppälä A, Shangguan M, Sinnhuber M, Tourpali K, Usoskin I, van de Kamp M, Verronen PT, Versick S (2017) Solar forcing for CMIP6 (v3.2). Geosci Model Dev 10:2247–2302. https://doi.org/10.5194/gmd-10-2247-2017

    ADS  CAS  CrossRef  Google Scholar 

  • Mauritsen T, Roeckner E (2020) Tuning the MPI-ESM1.2 global climate model to improve the match with instrumental record warming by lowering its climate sensitivity. J Adv Model Earth Syst 12:e2019MS002037. https://doi.org/10.1029/2019MS002037

  • McIntyre S, McKitrick R (2003) Corrections to the Mann et. al. (1998) Proxy data base & northern hemispheric average temperature series. Energy & Environm 14:751–771. https://doi.org/10.1260/095830503322793632

    CrossRef  Google Scholar 

  • Meehl GA, Senior CA, Eyring V, Flato G, Lamarque J-F, Stouffer RJ, Taylor KE, Schlund M (2020) Context for interpreting equilibrium climate sensitivity & transient climate response from the CMIP6 Earth system models. Sci Adv 6:eaba1981. https://doi.org/10.1126/sciadv.aba1981

  • Meijer HA (2007) Comment on “180 years of atmospheric CO2 Gas analysis by chemical methods” by Ernst-Georg Beck. Energy & Environm 18:635–636. https://doi.org/10.1260/0958-305X.18.5.635

    CrossRef  Google Scholar 

  • Meyer H, Opel T, Laepple T, Dereviagin AY, Hoffmann K, Werner M (2015) Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat Geosci 8:122–125. https://doi.org/10.1038/ngeo2349

    ADS  CAS  CrossRef  Google Scholar 

  • Middleton D (2020) Climate sensitivity estimates: Declining or not? Watts Up With That? https://wattsupwiththat.com/2020/11/14/climate-sensitivity-estimates-declining-or-not/. Letzter Zugriff: 25.03.2021

  • Miller AJ, Collins M, Gualdi S, Jensen TG, Misra V, Pezzi LP, Pierce DW, Putrasahan D, Seo H, Tseng Y-H (2017) Coupled ocean-atmosphere modeling & predictions. J Mar Res 75:361–402. https://doi.org/10.1357/002224017821836770

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114. https://doi.org/10.1126/science.291.5501.112

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Murphy DJ, Hall CAS (2011) Energy return on investment, peak oil, & the end of economic growth. Annu New York Acad Sci 1219:52–72. https://doi.org/10.1111/j.1749-6632.2010.05940.x

    ADS  CrossRef  Google Scholar 

  • National Review Staff (22.03.2007) Plutonic Warming: Fred Thompson on Paul Harvey Show. ABC Radio Networks. https://www.nationalreview.com/2007/03/plutonic-warming/. Letzter Zugriff: 29.03.2021

  • Neukom R, Barboza LA, Erb MP, Shi F, Emile-Geay J, Evans MN, Franke J, Kaufman DS, Lücke L, Rehfeld K, Schurer A, Zhu F, Brönnimann S, Hakim GJ, Henley BJ, Ljungqvist FC, McKay N, Valler V, Gunten L von (2019) Consistent multi-decadal variability in global temperature reconstructions & simulations over the Common Era. Nature Geosci 12:643–649. https://doi.org/10.1038/s41561-019-0400-0

    CAS  CrossRef  Google Scholar 

  • Nijsse FJMM, Cox PM, Williamson MS (2020) An emergent constraint on transient climate response from simulated historical warming in CMIP6 models. Earth Syst Dyn Disc. https://doi.org/10.5194/esd-2019-86

    CrossRef  Google Scholar 

  • Nikolov N, Zeller K (2017) New insights on the physical nature of the atmospheric greenhouse effect deduced from an empirical planetary temperature model. Environ Pollut Clim Change 1 (2):1-22. https://doi.org/10.4172/2573-458X.1000112

    CrossRef  Google Scholar 

  • NOAA (2021) Climate at a glance. National Centers for Environmental Information (NCEI). https://www.ncdc.noaa.gov/cag/global/time-series. Letzter Zugriff: 17.03.2021

  • NOAA Global Monitoring Laboratory, Earth System Research Laboratories (2021) ESRL Global Monitoring Laboratory – FTP Navigator, NOAA. https://www.esrl.noaa.gov/gmd/dv/data/index.php?category=Greenhouse%2BGases&parameter_name=Carbon%2BDioxide. Letzter Zugriff: 08.04.2021

  • NOAA/OAR/ESRL PSL (2020) Pacific Decadal Oscillation (PDO): NOAA Physical Sciences Laboratory. National Oceanic and Atmospheric Administration. https://psl.noaa.gov/pdo/. Letzter Zugriff: 24.03.2021

  • PALAEOSENS Project Members (2012) Making sense of palaeoclimate sensitivity. Nature 491:683–691. https://doi.org/10.1038/nature11574

  • Philipona R (2004) Radiative forcing – measured at Earth‘s surface – corroborate the increasing greenhouse effect. Geophys Res Lett 31. https://doi.org/10.1029/2003GL018765

  • Piao S, Wang X, Wang K, Li X, Bastos A, Canadell JG, Ciais P, Friedlingstein P, Sitch S (2020b) Interannual variation of terrestrial carbon cycle: Issues & perspectives. Glob Change Biol 26:300–318. https://doi.org/10.1111/gcb.14884

    ADS  CrossRef  Google Scholar 

  • Pierrehumbert RT (2011) Infrared radiation & planetary temperature. Phys Today 33:33–38. https://doi.org/10.1063/1.3653855

    CrossRef  Google Scholar 

  • Plimer I (2010) Heaven & Earth: global warming, the missing science. Choice Reviews Online 47:4435. https://doi.org/10.5860/choice.47-4435

    CrossRef  Google Scholar 

  • Proistosescu C, Huybers PJ (2017) Slow climate mode reconciles historical & model-based estimates of climate sensitivity. Sci Adv 3:e1602821. https://doi.org/10.1126/sciadv.1602821

    ADS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Prokoph A, Shields GA, Veizer J (2008) Compilation & time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr & δ34S database through Earth history. Earth-Sci Rev 87:113–133. https://doi.org/10.1016/j.earscirev.2007.12.003

    ADS  CAS  CrossRef  Google Scholar 

  • Puckrin E, Evans WF, Li J, Lavoie H (2004) Comparison of clear-sky surface radiative fluxes simulated with radiative transfer models. Canadian J Remote Sensing 30:903–912. https://doi.org/10.5589/m04-044

    ADS  CrossRef  Google Scholar 

  • Puls K-E (2009) Freispruch für CO2?: Immer mehr Wissenschaftler zweifeln an der Klimaschädlichkeit des unreaktiven Gases. EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/wp-content/uploads/2016/12/Puls.CO2_.LP_.pdf. Letzter Zugriff: 05.03.2021

  • Rabett E (2017) Making the elephant dance as performed by Ned Nikolov & Karl Zeller, Rabett Run. https://rabett.blogspot.com/2017/08/making-elephant-dance-as-performed-by.html. Letzter Zugriff: 01.03.2021

  • Radhakrishnan S (2017) Sun may be dimming: NASA to confirm declining luminosity using SpaceX’s payload. IBTimes Newsletter. https://www.ibtimes.com/sun-may-be-dimming-nasa-confirm-declining-luminosity-using-spacexs-payload-2629453. Letzter Zugriff: 05.03.2021

  • Rahmstorf S (2002) Flotte Kurven, dünne Daten: Im Medienstreit um den Klimawandel bleibt die Wissenschaft auf der Strecke. Potsdam Institut für Klimafolgenforschung (PIK). http://www.pik-potsdam.de/~stefan/Publications/Other/flottekurven.pdf. Letzter Zugriff: 06.03.2021

  • Rahmstorf S (2007) Der Klimaschwindel: Kommentar zum Film von RTL. Potsdam Institut für Klimafolgenforschung (PIK). http://www.pik-potsdam.de/~stefan/klimaschwindel.html. Letzter Zugriff: 06.03.2021

  • Rahmstorf S (2014) Der Anti-Treibhauseffekt des Herrn Ermecke. KlimaLounge, SciLogs – Wissenschaftsblogs. https://scilogs.spektrum.de/klimalounge/der-anti-treibhauseffekt-herrn-ermecke/. Letzter Zugriff: 11.03.2021

  • Rahmstorf S (2012a) Grönland im Mittelalter „fast eisfrei“! KlimaLounge, SciLogs – Wissenschaftsblogs. https://scilogs.spektrum.de/klimalounge/vahrenholt-groenland-im-mittelalter-fast-eisfrei/. Letzter Zugriff: 12.03.2021

  • Rahmstorf S (2017) Das Klima hat sich schon immer geändert. Was folgern Sie? KlimaLounge, SciLogs – Wissenschaftsblogs. https://scilogs.spektrum.de/klimalounge/das-klima-hat-sich-schon-immer-geaendert-folgern-sie/. Letzter Zugriff: 09.01.2021

  • Rayner PJ, Law RM, Allison CE, Francey RJ, Trudinger CM, Pickett-Heaps C (2008) Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 & δ13CO2 measurements. Global Biogeochem Cycles 22. https://doi.org/10.1029/2007gb003068

  • Resplandy L, Keeling RF, Rödenbeck C, Stephens BB, Khatiwala S, Rodgers KB, Long MC, Bopp L, Tans PP (2018) Revision of global carbon fluxes based on a reassessment of oceanic & riverine carbon transport. Nat Geosci 11:504–509. https://doi.org/10.1038/s41561-018-0151-3

    ADS  CAS  CrossRef  Google Scholar 

  • Riebesell U, Wolf-Gladrow DA (1993) Das Kohlenstoffrätsel. Biologie in unserer Zeit 23:97–101

    CAS  CrossRef  Google Scholar 

  • Richter-Krautz J, Hofmann M, Zieger J, Linnemann U, Kleber A (2021) Zircon provenance of Quaternary cover beds using U-Pb dating: regional differences in the south-western USA. Earth-Surf Proc Landf 46: 968–989. https://doi.org/10.1002/esp.5073

    ADS  CAS  CrossRef  Google Scholar 

  • Robinson AB, Robinson NE, Soon W (2007) Environmental effects of increased atmospheric carbon dioxide. J Amer Physicians & Surgeons 12:79–90. https://doi.org/10.3354/cr013149

    CrossRef  Google Scholar 

  • Robinson C (2019) Microbial respiration, the engine of ocean deoxygenation. Front Mar Sci 5:533. https://doi.org/10.3389/fmars.2018.00533

    CrossRef  Google Scholar 

  • Roe G (2009) Feedbacks, timescales, & seeing red. Annu RevEarth Planet Sci 37:93–115. https://doi.org/10.1146/annurev.earth.061008.134734

    ADS  CAS  CrossRef  MATH  Google Scholar 

  • Rogelio PC (2018) Climate change is caused by the absorption of energy ultraviolet by oxygen. https://rogelioperez1sep.blogspot.com/2018/09/title-climate-change-is-caused-by.html. Letzter Zugriff: 21.07.2021

  • Rörsch A, Ziegler PA (2013) Why scientists are ‘sceptical’ about the AGW Concept. Energy & Environ 24:551–559. www.jstor.org/stable/43735186. Letzter Zugriff: 08.06.2021

  • Rothman LS, Gordon IE, Babikov Y, Barbe A, Chris Benner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller H, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith M, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev V, Wagner G (2013) The HITRAN2012 molecular spectroscopic database. J Quant Spectroscopy & Radiative Transf 130:4–50. https://doi.org/10.1016/j.jqsrt.2013.07.002

    ADS  CAS  CrossRef  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochimica Cosmochimica Acta 70:5665–5675. https://doi.org/10.1016/j.gca.2005.11.031

    ADS  CAS  CrossRef  Google Scholar 

  • Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–532. https://doi.org/10.1038/nature05699

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Rugenstein M, Bloch‐Johnson J, Gregory J, Andrews T, Mauritsen T, Li C, Frölicher TL, Paynter D, Danabasoglu G, Yang S, Dufresne J-L, Cao L, Schmidt GA, Abe‐Ouchi A, Geoffroy O, Knutti R (2020) Equilibrium climate sensitivity estimated by equilibrating climate models. Geophys Res Lett 47. https://doi.org/10.1029/2019GL083898

  • Salby M (2011) SALBY_02.08.11. YouTube. https://www.youtube.com/watch?v=YrI03ts--9I. Letzter Zugriff 17.03.2021

  • Santer BD, Fyfe JC, Solomon S, Painter JF, Bonfils C, Pallotta G, Zelinka MD (2019) Quantifying stochastic uncertainty in detection time of human-caused climate signals. PNAS 116:19821–19827. https://doi.org/10.1073/pnas.1904586116

    ADS  CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sapper G-E (2020) Kommentar zu „Worauf ist die Meinung der Klimaskeptiker fundiert?“. Quora.com. https://de.quora.com/Worauf-ist-die-Meinung-der-Klimaskeptiker-fundiert/answer/Arno-Kleber/comment/131002231. Letzter Zugriff: 11.03.2021

  • Scafetta N (2010) Climate change & its causes: A discussion about some key issues. arXiv. https://arxiv.org/abs/1003.1554v1. Letzter Zugriff: 10.06.2021

  • Scafetta N (2012) Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models. J Atmos & Solar-Terrestr Phys 80:124–137. https://doi.org/10.1016/j.jastp.2011.12.005

    ADS  CrossRef  Google Scholar 

  • Scafetta N, Milani F, Bianchini A, Ortolani S (2016) On the astronomical origin of the Hallstatt oscillation found in radiocarbon & climate records throughout the Holocene. Earth-Sci Rev 162:24–43. https://doi.org/10.1016/j.earscirev.2016.09.004

    ADS  CAS  CrossRef  Google Scholar 

  • Scafetta N, Mirandola A, Bianchini A (2017) Natural climate variability, part 2: Interpretation of the post 2000 temperature standstill. Int J Heat Technol 35:S18-S26. https://doi.org/10.18280/ijht.35Sp0103

  • Scafetta N, Willson RC (2009) ACRIM-gap & TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36. https://doi.org/10.1029/2008GL036307

  • Scafetta N, Willson RC (2019) Comparison of Decadal Trends among Total Solar Irradiance Composites of Satellite Observations. Adv Astron 2019:1–14. https://doi.org/10.1155/2019/1214896

    CrossRef  Google Scholar 

  • Schmidt GA (2014) Can we make better graphs of global temperature history? RealClimate. http://www.realclimate.org/index.php/archives/2014/03/can-we-make-better-graphs-of-global-temperature-history/. Letzter Zugriff: 22.01.2021

  • Schneider B, Nocke T, Feulner G (2014) Twist & shout: Images & graphs in skeptical climate media. In: Schneider B, Nocke T (Hrsg.) Image politics of climate change: Visualizations, imaginations, documentations. Transcript, Bielefeld, 153–186

    Google Scholar 

  • Scotese CR (1999) Paleomap Project: climate history. http://web.archive.org/web/20000816185216im_/http://www.scotese.com/climate.htm. Letzter Zugriff: 22.01.2021

  • Scotese CR, Song H, Mills BJ, van der Meer DG (2021) Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews 215:103503. https://doi.org/10.1016/j.earscirev.2021.103503

    CAS  CrossRef  Google Scholar 

  • Seeley JT, Jeevanjee N (2021) H2O windows & CO2 radiator fins: A clear-sky explanation for the peak in equilibrium climate sensitivity. Geophys Res Lett 48. https://doi.org/10.1029/2020GL089609

  • Sicherheitshalber die Quellenangabe: Segalstad TV (1998) Carbon cycle modelling & the residence time of natural & anthropogenic atmospheric CO2: On the construction of the „Greenhouse Effect Global Warming“ dogma. https://www.researchgate.net/profile/brendan_godwin/post/global_warming_part_1_causes_and_consequences_of_global_warming_a_natural_phenomenon_a_political_issue_or_a_scientific_debate/attachment/5cf9b50fcfe4a7968da7fcb5/Letzter Zugriff: 03.03.2021

  • Seinfeld JH, Pandis SN (2016) Atmospheric Chemistry & Physics: From air pollution to climate change. 3. Aufl. John Wiley & Sons, Ltd, New York

    Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54. https://doi.org/10.1038/nature10915

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, Hargreaves JC, Hegerl G, Klein SA, Marvel KD, Rohling EJ, Watanabe M, Andrews T, Braconnot P, Bretherton CS, Foster GL, Hausfather Z, Heydt AS von der, Knutti R, Mauritsen T, Norris JR, Proistosescu C, Rugenstein M, Schmidt GA, Tokarska KB, Zelinka MD (2020) An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev Geophys 58:e2019RG000678. https://doi.org/10.1029/2019RG000678

  • Sheppard N (11.02.2007) Former science mag editor speaks out against global warming hysteria. Newsbusters. https://www.newsbusters.org/blogs/nb/noel-sheppard/2007/02/11/former-science-mag-editor-speaks-out-against-global-warming. Letzter Zugriff: 22.03.2021

  • Shine KP, Derwent RG, Wuebbles DJ, Morcrette J-J (1990) First assessment report: Radiative forcing of climate. Intergovernmental Panel on Climate Change (IPCC). https://archive.ipcc.ch/ipccreports/far/wg_I/ipcc_far_wg_I_chapter_02.pdf. Letzter Zugriff: 15.05.2021

  • Singer SF (2008) Die Natur, nicht menschliche Aktivität, bestimmt das Klima: Technische Zusammenfassung für politische Entscheider zum Bericht der Internationalen Nichtregierungskommission zum Klimawandel. Sci Environ Policy Proj 2008. TvR-Medienverlag, Jena

    Google Scholar 

  • Smith K, Newnham D (1999) Near-infrared absorption spectroscopy of oxygen & nitrogen gas mixtures. Chem Phys Lett 308:1–6. https://doi.org/10.1016/S0009-2614(99)00584-9

    ADS  CAS  CrossRef  Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116. https://doi.org/10.5194/acp-11-1101-2011

    ADS  CAS  CrossRef  Google Scholar 

  • Soares PC (2010) Warming power of CO2 & H2O: Correlations with temperature changes. Int J Geosci 1:102–112. https://doi.org/10.4236/ijg.2010.13014

    CAS  CrossRef  Google Scholar 

  • Sommer M (2019) Antwort auf „Warum versucht man den Klimawandel zu stoppen? Wäre der nicht auch ohne Menschen gekommen?“ Quora.com. https://de.quora.com/Warum-versucht-man-den-Klimawandel-zu-stoppen-W%C3%A4re-der-nicht-auch-ohne-Menschen-gekommen/answer/Manfred-Sommer. Letzter Zugriff: 03.01.2021

  • Specht E, Redemann T, Lorenz N (2016) Simplified mathematical model for calculating global warming through anthropogenic CO2. Int J Therm Sci 102:1–8. https://doi.org/10.1016/j.ijthermalsci.2015.10.039

    CAS  CrossRef  Google Scholar 

  • Spencer RW (2008) Global warming: Natural or manmade? drroyspencer.com. https://www.drroyspencer.com/global-warming-natural-or-manmade/. Letzter Zugriff: 16.03.2021

  • Spencer RW (2011) Why atmospheric pressure cannot explain the elevated surface temperature of the Earth. drroyspencer.com. http://www.drroyspencer.com/2011/12/why-atmospheric-pressure-cannot-explain-the-elevated-surface-temperature-of-the-earth/. Letzter Zugriff: 11.03.2021

  • Spencer RW, Braswell WD, Christy JR, Hnilo J (2007) Cloud & radiation budget changes associated with tropical intraseasonal oscillations. Geophys Res Lett 34. https://doi.org/10.1029/2007GL029698

  • Stallinga P, Khmelinskii I (2018) Phase relation between global temperature & atmospheric carbon dioxide. arXiv. https://arxiv.org/pdf/1311.2165.pdf. Letzter Zugriff: 13.01.2021

  • Steinthorsdottir M, Boer AM de, Oliver KI, Muschitiello F, Blaauw M, Reimer PJ, Wohlfarth B (2014) Synchronous records of pCO2 & Δ14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas. Quat Sci Rev 99:84–96. https://doi.org/10.1016/j.quascirev.2014.06.021

  • Steinthorsdottir M, Wohlfarth B, Kylander ME, Blaauw M, Reimer PJ (2013) Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions. Quat Sci Rev 68:43–58. https://doi.org/10.1016/j.quascirev.2013.02.003

    ADS  CrossRef  Google Scholar 

  • Stocker T, Alexander L, Allen M (2014) Climate change 2013: The physical science basis. Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. WMO IPCC, Geneva. https://www.osti.gov/etdeweb/biblio/22221318. Letzter Zugriff: 10.06.2021

  • Strong J, Plass GN (1950) The effect of pressure broadening of spectral lines on atmospheric temperature. Astrophys J 112:365. https://doi.org/10.1086/145352

    ADS  CAS  CrossRef  Google Scholar 

  • Sutton J, Elias T, Hendley II JW, Stauffer PH (2000) Volcanic air pollution – a hazard in Hawaii. U.S. Geological Survey Fact Sheet 169–97. https://books.google.com/books?hl=de&lr=&id=Vyjxre7bkYoC&oi=fnd&dq=Volcanic+air+pollution+-+a+hazard+in+Hawaii&ots=Jg9zgWeXu0&sig=tbIjDFqh36wXj-GGNk1FxNuftmc. Letzter Zugriff: 10.06.2021

  • Svensmark H (2007) Cosmoclimatology: A new theory emerges. Astron Geophys 48:1.18-1.24. https://doi.org/10.1111/j.1468-4004.2007.48118.x

  • Svensmark H (2019) Force majeure: The sun‘s role in climate change. GWPF Reports 33. The Global Warming Policy Foundation, London, United Kingdom

    Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux & global cloud coverage – a missing link in solar-climate relationships. J Atmos Solar-Terrestr Phys 59:1225–1232. https://doi.org/10.1016/S1364-6826(97)00001-1

  • Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc Royal Soc A 463:385–396. https://doi.org/10.1098/rspa.2006.1773

    ADS  CAS  CrossRef  Google Scholar 

  • Svensmark H, Enghoff MB, Shaviv NJ, Svensmark J (2017) Increased ionization supports growth of aerosols into cloud condensation nuclei. Nat Commun 8:2199. https://doi.org/10.1038/s41467-017-02082-2

    ADS  CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Swanson K (2009) Warming, interrupted: Much ado about natural variability. RealClimate. https://www.realclimate.org/index.php/archives/2009/07/warminginterrupted-much-ado-about-natural-variability/. Letzter Zugriff: 08.04.2021

  • Swanson KL, Tsonis AA (2009) Has the climate recently shifted? Geophys Res Lett 36. https://doi.org/10.1029/2008GL037022

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, Salzen K von, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

    ADS  CAS  CrossRef  Google Scholar 

  • Swart NC, Gille ST, Fyfe JC, Gillett NP (2018) Recent southern ocean warming & freshening driven by greenhouse gas emissions & ozone depletion. Nature Geosci 11:836–841. https://doi.org/10.1038/s41561-018-0226-1

    ADS  CAS  CrossRef  Google Scholar 

  • Terhaar J, Kwiatkowski L, Bopp L (2020) Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582:379–383. https://doi.org/10.1038/s41586-020-2360-3

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Test W (2020) Prof. Svensmark benötigt Ihre Unterstützung. EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/2020/11/07/prof-svensmark-benoetigt-ihre-unterstuetzung/. Letzter Zugriff: 15.12.2020

  • The Age (08.07.2005) When politics engulfs science. The Age. https://www.theage.com.au/business/when-politics-engulfs-science-20050708-ge0h82.html. Letzter Zugriff: 23.01.2021

  • Thejll P, Lassen K (2000) Solar forcing of the Northern hemisphere land air temperature: New data. J Atmos & Solar-Terrestr Phys 62:1207–1213. https://doi.org/10.1016/S1364-6826(00)00104-8

    ADS  CrossRef  Google Scholar 

  • Thomasson MR, Gerhard LC (2019) The true & false of climate change. J Earth Environ Sci 7: 169–177. https://doi.org/10.29011/2577-0640.100169

  • Thumulla C (2015) Ein Gedankenexperiment zum Klima auf der Erde. thumulla.com. http://thumulla.com/home/ein_gedankenexperiment_zum_klima_auf_der_erde.html. Letzter Zugriff: 13.03.2021

  • Tierney JE, Zhu J, King J, Malevich SB, Hakim GJ, Poulsen CJ (2020) Glacial cooling & climate sensitivity revisited. Nature 584:569–573. https://doi.org/10.1038/s41586-020-2617-x

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Tokarska KB, Hegerl GC, Schurer AP, Ribes A, Fasullo JT (2019) Quantifying human contributions to past & future ocean warming & thermosteric sea level rise. Environ Res Lett 14:74020. https://doi.org/10.1088/1748-9326/ab23c1

    CAS  CrossRef  Google Scholar 

  • Toureille A (2019) Water dipole & climate of the Earth. Int J Plasma Environ Sci & Technol 13:83–86

    Google Scholar 

  • Traufetter G (30.08.2006) Arctic harvest: Global warming a boon for Greenland‘s farmers. Der Spiegel International. https://www.spiegel.de/international/spiegel/arctic-harvest-global-warming-a-boon-for-greenland-s-farmers-a-434356.html. Letzter Zugriff: 12.03.2021

  • Trenberth K, Zhang R, National Center for Atmospheric Research Staff (2021) Climate data guide: Atlantic Multi-decadal Oscillation (AMO). National Center for Atmospheric Research (NCAR). https://climatedataguide.ucar.edu/climate-data/atlantic-multi-decadal-oscillation-amo. Letzter Zugriff: 24.03.2021

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth‘s global energy budget. Bull Amer Meteorol Soc 90:311–324. https://doi.org/10.1175/2008BAMS2634.1

    ADS  CrossRef  Google Scholar 

  • Tsonis AA, Swanson K, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34. https://doi.org/10.1029/2007GL030288

  • Tung K-K, Zhou J (2013) Using data to attribute episodes of warming & cooling in instrumental records. PNAS 110:2058–2063. https://doi.org/10.1073/pnas.1212471110

    ADS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tzanis CG, Koutsogiannis I, Philippopoulos K, Kalamaras N (2020) Multifractal detrended cross-correlation analysis of global methane & temperature. Remote Sensing 12:557. https://doi.org/10.3390/rs12030557

    ADS  CrossRef  Google Scholar 

  • Vahrenholt F, Lüning S (2013) Ein Thema, das die Medien meiden wie der Teufel das Weihwasser: Vor 5000 Jahren war es in Grönland zwei bis drei Grad wärmer als heute. Kalte Sonne. https://kaltesonne.de/ein-thema-das-die-medien-meiden-wie-der-teufel-das-weihwasser-vor-5000-jahren-war-es-in-gronland-zwei-bis-drei-grad-warmer-als-heute/. Letzter Zugriff: 14.05.2021

  • Vahrenholt F, Lüning S (2015) Wärmer oder kälter? AWI-Studie zur Klimageschichte Sibiriens der letzten 7000 Jahre gibt Rätsel auf. Kalte Sonne. https://kaltesonne.de/warmer-oder-kalter-awi-studie-zur-klimageschichte-sibiriens-der-letzten-7000-jahre-gibt-ratsel-auf/. Letzter Zugriff: 19.05.2021

  • Vaillant de Guélis T, Chepfer H, Guzman R, Bonazzola M, Winker DM, Noel V (2018) Space lidar observations constrain longwave cloud feedback. Sci Rep 8:16570. https://doi.org/10.1038/s41598-018-34943-1

    ADS  CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • van Hoof TB, Kaspers KA, Wagner F, van Wal RS de, Kürschner WM, Visscher H (2005) Atmospheric CO2 during the 13th century AD: reconciliation of data from ice core measurements & stomatal frequency analysis. Tellus B: Chem Phys Meteorol 57:351–355. https://doi.org/10.3402/tellusb.v57i4.16555

    ADS  CrossRef  Google Scholar 

  • Vega-Westhoff B, Sriver RL, Hartin CA, Wong TE, Keller K (2019) Impacts of observational constraints related to sea level on estimates of climate sensitivity. Earth‘s Future 7:677–690. https://doi.org/10.1029/2018EF001082

  • Veizer J, Godderis Y, François LM (2000) Evidence for decoupling of atmospheric CO2 & global climate during the Phanerozoic eon. Nature 408:698–701. https://doi.org/10.1038/35047044

  • Vinther BM, Buchardt SL, Clausen HB, Dahl-Jensen D, Johnsen SJ, Fisher DA, Koerner RM, Raynaud D, Lipenkov V, Andersen KK, Blunier T, Rasmussen SO, Steffensen JP, Svensson AM (2009) Holocene thinning of the Greenland ice sheet. Nature 461:385–388. https://doi.org/10.1038/nature08355

    ADS  CAS  CrossRef  PubMed  Google Scholar 

  • Virgin JG, Fletcher CG, Cole JNS, Salzen K von, Mitovski T (2021) Cloud feedbacks from CanESM2 to CanESM5.0 & their influence on climate sensitivity. Geosci Model Develop Disc:1–25. https://doi.org/10.5194/gmd-2021-11

  • Vögele P (2017) Der C-Kreislauf – ein neuer umfassender Ansatz! EIKE – Europäisches Institut für Klima & Energie. https://www.eike-klima-energie.eu/2017/08/20/der-c-kreislauf-ein-neuer-umfassender-ansatz/. Letzter Zugriff: 14.03.2021

  • Wahl ER, Ammann CM (2007) Robustness of the Mann, Bradley, Hughes reconstruction of northern hemisphere surface temperatures: Examination of criticisms based on the nature & processing of proxy climate evidence. Clim Change 85:33–69. https://doi.org/10.1007/s10584-006-9105-7

    ADS  CrossRef  Google Scholar 

  • Wang K, Dickinson RE (2013) Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, & reanalyses. Rev Geophys 51:150–185. https://doi.org/10.1002/rog.20009

    ADS  CrossRef  Google Scholar 

  • Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochimica Cosmochimica Acta 73:2332–2346. https://doi.org/10.1016/j.gca.2009.02.009

    ADS  CAS  CrossRef  Google Scholar 

  • Walden A (04.12.2009) Greenhouse gas observatories downwind from erupting volcanoes. American Thinker. https://www.americanthinker.com/articles/2009/12/greenhouse_gas_observatories_d.html. Letzter Zugriff: 08.04.2021

  • Werner C, Fischer TP, Aiuppa A, Edmonds M, Cardellini C, Carn S, Chiodini G, Cottrell E, Burton M, Shinohara H, Allard P (2020) Deep carbon: Past to present. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Willson RC, Mordvinov AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30. https://doi.org/10.1029/2002GL016038

  • Yoshimori M, Lambert FH, Webb MJ, Andrews T (2020) Fixed anvil temperature feedback: Positive, zero, or negative? J Climate 33:2719–2739. https://doi.org/10.1175/JCLI-D-19-0108.1

    ADS  CrossRef  Google Scholar 

  • Zacharias P (2014) An independent review of existing total solar irradiance records. Surv Geophys 35:897–912. https://doi.org/10.1007/s10712-014-9294-y

    ADS  CrossRef  Google Scholar 

  • Zech R (2012) A permafrost glacial hypothesis – Permafrost carbon might help explaining the Pleistocene ice ages. E&G Quaternary Sci J 61:84–92. https://doi.org/10.3285/eg.61.1.07

    CrossRef  Google Scholar 

  • Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P, Klein SA, Taylor KE (2020) Causes of higher climate sensitivity in CMIP6 models. Geophys Res Lett 47. https://doi.org/10.1029/2019GL085782

  • Zhu C, Xia J (2020) Nonlinear increase of vegetation carbon storage in aging forests & its implications for Earth system models. J Adv Model Earth Syst 12. https://doi.org/10.1029/2020MS002304

  • Zhu J, Poulsen CJ (2021) Last Glacial Maximum (LGM) climate forcing & ocean dynamical feedback & their implications for estimating climate sensitivity. Clim Past 17:253–267. https://doi.org/10.5194/cp-17-253-2021

    CrossRef  Google Scholar 

  • Zhu J, Poulsen CJ, Tierney JE (2019) Simulation of Eocene extreme warmth & high climate sensitivity through cloud feedbacks. Sci Adv 5:eaax1874. https://doi.org/10.1126/sciadv.aax1874

  • Zhu J, Poulsen CJ, Otto-Bliesner BL (2020) High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat Clim Change 10:378–379. https://doi.org/10.1038/s41558-020-0764-6

    ADS  CAS  CrossRef  Google Scholar 

  • Zorita E, Storch H von, Gonzalez-Rouco FJ, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation & the Late Maunder Minimum. Meteorol Z 13:271–289. https://doi.org/10.1127/0941-2948/2004/0013-0271

    CrossRef  Google Scholar 

  • Zwischenstaatlicher Ausschuss für Klimaänderungen (2014) Klimaänderung 2014 – IPCC-Synthesebericht: Zusammenfassung für politische Entscheidungsträger. https://www.ipcc.ch/site/assets/uploads/2019/03/IPCC-AR5_SYR_SPM_deutsch.pdf. Letzter Zugriff: 21.03.2021